Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 59.18.5. Notation and assumptions as in Definition 59.18.1. The Čech complex $\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F})$ can be described explicitly as follows

\begin{eqnarray*} \check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F}) & = & \left( \prod _{i_0 \in I} \mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})}(\mathbf{Z}_{U_{i_0}}, \mathcal{F}) \to \prod _{i_0, i_1 \in I} \mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})}( \mathbf{Z}_{U_{i_0} \times _ U U_{i_1}}, \mathcal{F}) \to \ldots \right) \\ & = & \mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})}\left( \left( \bigoplus _{i_0 \in I} \mathbf{Z}_{U_{i_0}} \leftarrow \bigoplus _{i_0, i_1 \in I} \mathbf{Z}_{U_{i_0} \times _ U U_{i_1}} \leftarrow \ldots \right), \mathcal{F}\right) \end{eqnarray*}

Proof. This follows from the formula above. See Cohomology on Sites, Lemma 21.9.3. $\square$


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.