The Stacks project

59.18 Čech cohomology

Our next goal is to use descent theory to show that $H^ i(\mathcal{C}, \mathcal{F}^ a) = H_{Zar}^ i(S, \mathcal{F})$ for all quasi-coherent sheaves $\mathcal{F}$ on $S$, and any site $\mathcal{C}$ as in Theorem 59.17.4. To this end, we introduce Čech cohomology on sites. See [ArtinTopologies] and Cohomology on Sites, Sections 21.8, 21.9 and 21.10 for more details.

Definition 59.18.1. Let $\mathcal{C}$ be a category, $\mathcal{U} = \{ U_ i \to U\} _{i \in I}$ a family of morphisms of $\mathcal{C}$ with fixed target, and $\mathcal{F} \in \textit{PAb}(\mathcal{C})$ an abelian presheaf. We define the Čech complex $\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F})$ by

\[ \prod _{i_0\in I} \mathcal{F}(U_{i_0}) \to \prod _{i_0, i_1\in I} \mathcal{F}(U_{i_0} \times _ U U_{i_1}) \to \prod _{i_0, i_1, i_2 \in I} \mathcal{F}(U_{i_0} \times _ U U_{i_1} \times _ U U_{i_2}) \to \ldots \]

where the first term is in degree 0, and the maps are the usual ones. Again, it is essential to allow the case $i_0 = i_1$ etc. The Čech cohomology groups are defined by

\[ \check{H}^ p(\mathcal{U}, \mathcal{F}) = H^ p(\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F})). \]

Lemma 59.18.2. The functor $\check{\mathcal{C}}^\bullet (\mathcal{U}, -)$ is exact on the category $\textit{PAb}(\mathcal{C})$.

In other words, if $0\to \mathcal{F}_1\to \mathcal{F}_2\to \mathcal{F}_3\to 0$ is a short exact sequence of presheaves of abelian groups, then

\[ 0 \to \check{\mathcal{C}}^\bullet \left(\mathcal{U}, \mathcal{F}_1\right) \to \check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F}_2) \to \check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F}_3)\to 0 \]

is a short exact sequence of complexes.

Proof. This follows at once from the definition of a short exact sequence of presheaves. Namely, as the category of abelian presheaves is the category of functors on some category with values in $\textit{Ab}$, it is automatically an abelian category: a sequence $\mathcal{F}_1\to \mathcal{F}_2\to \mathcal{F}_3$ is exact in $\textit{PAb}$ if and only if for all $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, the sequence $\mathcal{F}_1(U) \to \mathcal{F}_2(U) \to \mathcal{F}_3(U)$ is exact in $\textit{Ab}$. So the complex above is merely a product of short exact sequences in each degree. See also Cohomology on Sites, Lemma 21.9.1. $\square$

This shows that $\check{H}^\bullet (\mathcal{U}, -)$ is a $\delta $-functor. We now proceed to show that it is a universal $\delta $-functor. We thus need to show that it is an effaceable functor. We start by recalling the Yoneda lemma.

Lemma 59.18.3 (Yoneda Lemma). For any presheaf $\mathcal{F}$ on a category $\mathcal{C}$ there is a functorial isomorphism

\[ \mathop{\mathrm{Hom}}\nolimits _{\textit{PSh}(\mathcal{C})}(h_ U, \mathcal{F}) = \mathcal{F}(U). \]

Proof. See Categories, Lemma 4.3.5. $\square$

Given a set $E$ we denote (in this section) $\mathbf{Z}[E]$ the free abelian group on $E$. In a formula $\mathbf{Z}[E] = \bigoplus _{e \in E} \mathbf{Z}$, i.e., $\mathbf{Z}[E]$ is a free $\mathbf{Z}$-module having a basis consisting of the elements of $E$. Using this notation we introduce the free abelian presheaf on a presheaf of sets.

Definition 59.18.4. Let $\mathcal{C}$ be a category. Given a presheaf of sets $\mathcal{G}$, we define the free abelian presheaf on $\mathcal{G}$, denoted $\mathbf{Z}_\mathcal {G}$, by the rule

\[ \mathbf{Z}_\mathcal {G}(U) = \mathbf{Z}[\mathcal{G}(U)] \]

for $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ with restriction maps induced by the restriction maps of $\mathcal{G}$. In the special case $\mathcal{G} = h_ U$ we write simply $\mathbf{Z}_ U = \mathbf{Z}_{h_ U}$.

The functor $\mathcal{G} \mapsto \mathbf{Z}_\mathcal {G}$ is left adjoint to the forgetful functor $\textit{PAb}(\mathcal{C}) \to \textit{PSh}(\mathcal{C})$. Thus, for any presheaf $\mathcal{F}$, there is a canonical isomorphism

\[ \mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})}(\mathbf{Z}_ U, \mathcal{F}) = \mathop{\mathrm{Hom}}\nolimits _{\textit{PSh}(\mathcal{C})}(h_ U, \mathcal{F}) = \mathcal{F}(U) \]

the last equality by the Yoneda lemma. In particular, we have the following result.

Lemma 59.18.5. The Čech complex $\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F})$ can be described explicitly as follows

\begin{eqnarray*} \check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F}) & = & \left( \prod _{i_0 \in I} \mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})}(\mathbf{Z}_{U_{i_0}}, \mathcal{F}) \to \prod _{i_0, i_1 \in I} \mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})}( \mathbf{Z}_{U_{i_0} \times _ U U_{i_1}}, \mathcal{F}) \to \ldots \right) \\ & = & \mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})}\left( \left( \bigoplus _{i_0 \in I} \mathbf{Z}_{U_{i_0}} \leftarrow \bigoplus _{i_0, i_1 \in I} \mathbf{Z}_{U_{i_0} \times _ U U_{i_1}} \leftarrow \ldots \right), \mathcal{F}\right) \end{eqnarray*}

Proof. This follows from the formula above. See Cohomology on Sites, Lemma 21.9.3. $\square$

This reduces us to studying only the complex in the first argument of the last $\mathop{\mathrm{Hom}}\nolimits $.

Lemma 59.18.6. The complex of abelian presheaves

\begin{align*} \mathbf{Z}_\mathcal {U}^\bullet \quad : \quad \bigoplus _{i_0 \in I} \mathbf{Z}_{U_{i_0}} \leftarrow \bigoplus _{i_0, i_1 \in I} \mathbf{Z}_{U_{i_0} \times _ U U_{i_1}} \leftarrow \bigoplus _{i_0, i_1, i_2 \in I} \mathbf{Z}_{U_{i_0} \times _ U U_{i_1} \times _ U U_{i_2}} \leftarrow \ldots \end{align*}

is exact in all degrees except $0$ in $\textit{PAb}(\mathcal{C})$.

Proof. For any $V\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ the complex of abelian groups $\mathbf{Z}_\mathcal {U}^\bullet (V)$ is

\[ \begin{matrix} \mathbf{Z}\left[ \coprod _{i_0\in I} \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U_{i_0})\right] \leftarrow \mathbf{Z}\left[ \coprod _{i_0, i_1 \in I} \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U_{i_0} \times _ U U_{i_1})\right] \leftarrow \ldots = \\ \bigoplus _{\varphi : V \to U} \left( \mathbf{Z}\left[\coprod _{i_0 \in I} \mathop{\mathrm{Mor}}\nolimits _\varphi (V, U_{i_0})\right] \leftarrow \mathbf{Z}\left[\coprod _{i_0, i_1\in I} \mathop{\mathrm{Mor}}\nolimits _\varphi (V, U_{i_0}) \times \mathop{\mathrm{Mor}}\nolimits _\varphi (V, U_{i_1})\right] \leftarrow \ldots \right) \end{matrix} \]

where

\[ \mathop{\mathrm{Mor}}\nolimits _{\varphi }(V, U_ i) = \{ V \to U_ i \text{ such that } V \to U_ i \to U \text{ equals } \varphi \} . \]

Set $S_\varphi = \coprod _{i\in I} \mathop{\mathrm{Mor}}\nolimits _\varphi (V, U_ i)$, so that

\[ \mathbf{Z}_\mathcal {U}^\bullet (V) = \bigoplus _{\varphi : V \to U} \left( \mathbf{Z}[S_\varphi ] \leftarrow \mathbf{Z}[S_\varphi \times S_\varphi ] \leftarrow \mathbf{Z}[S_\varphi \times S_\varphi \times S_\varphi ] \leftarrow \ldots \right). \]

Thus it suffices to show that for each $S = S_\varphi $, the complex

\begin{align*} \mathbf{Z}[S] \leftarrow \mathbf{Z}[S \times S] \leftarrow \mathbf{Z}[S \times S \times S] \leftarrow \ldots \end{align*}

is exact in negative degrees. To see this, we can give an explicit homotopy. Fix $s\in S$ and define $K: n_{(s_0, \ldots , s_ p)} \mapsto n_{(s, s_0, \ldots , s_ p)}.$ One easily checks that $K$ is a nullhomotopy for the operator

\[ \delta : \eta _{(s_0, \ldots , s_ p)} \mapsto \sum \nolimits _{i = 0}^ p (-1)^ p \eta _{(s_0, \ldots , \hat s_ i, \ldots , s_ p)}. \]

See Cohomology on Sites, Lemma 21.9.4 for more details. $\square$

Lemma 59.18.7. Let $\mathcal{C}$ be a category. If $\mathcal{I}$ is an injective object of $\textit{PAb}(\mathcal{C})$ and $\mathcal{U}$ is a family of morphisms with fixed target in $\mathcal{C}$, then $\check H^ p(\mathcal{U}, \mathcal{I}) = 0$ for all $p > 0$.

Proof. The Čech complex is the result of applying the functor $\mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})}(-, \mathcal{I}) $ to the complex $ \mathbf{Z}^\bullet _\mathcal {U} $, i.e.,

\[ \check H^ p(\mathcal{U}, \mathcal{I}) = H^ p (\mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})} (\mathbf{Z}^\bullet _\mathcal {U}, \mathcal{I})). \]

But we have just seen that $\mathbf{Z}^\bullet _\mathcal {U}$ is exact in negative degrees, and the functor $\mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})}(-, \mathcal{I})$ is exact, hence $\mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})} (\mathbf{Z}^\bullet _\mathcal {U}, \mathcal{I})$ is exact in positive degrees. $\square$

Theorem 59.18.8. On $\textit{PAb}(\mathcal{C})$ the functors $\check{H}^ p(\mathcal{U}, -)$ are the right derived functors of $\check{H}^0(\mathcal{U}, -)$.

Proof. By the Lemma 59.18.7, the functors $\check H^ p(\mathcal{U}, -)$ are universal $\delta $-functors since they are effaceable. So are the right derived functors of $\check H^0(\mathcal{U}, -)$. Since they agree in degree $0$, they agree by the universal property of universal $\delta $-functors. For more details see Cohomology on Sites, Lemma 21.9.6. $\square$

Remark 59.18.9. Observe that all of the preceding statements are about presheaves so we haven't made use of the topology yet.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03OK. Beware of the difference between the letter 'O' and the digit '0'.