59.18 Čech cohomology
Our next goal is to use descent theory to show that H^ i(\mathcal{C}, \mathcal{F}^ a) = H_{Zar}^ i(S, \mathcal{F}) for all quasi-coherent sheaves \mathcal{F} on S, and any site \mathcal{C} as in Theorem 59.17.4. To this end, we introduce Čech cohomology on sites. See [ArtinTopologies] and Cohomology on Sites, Sections 21.8, 21.9 and 21.10 for more details.
Definition 59.18.1. Let \mathcal{C} be a category. Let \mathcal{U} = \{ U_ i \to U\} _{i \in I} be a family of morphisms of \mathcal{C} with fixed target. Assume that all the fibre products U_{i_0} \times _ U \ldots \times _ U U_{i_ p} exists in \mathcal{C}. Let \mathcal{F} \in \textit{PAb}(\mathcal{C}) be an abelian presheaf. We define the Čech complex \check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F}) by
\prod _{i_0 \in I} \mathcal{F}(U_{i_0}) \to \prod _{i_0, i_1 \in I} \mathcal{F}(U_{i_0} \times _ U U_{i_1}) \to \prod _{i_0, i_1, i_2 \in I} \mathcal{F}(U_{i_0} \times _ U U_{i_1} \times _ U U_{i_2}) \to \ldots
where the first term is in degree 0 and the maps are the usual ones. The Čech cohomology groups are defined by
\check{H}^ p(\mathcal{U}, \mathcal{F}) = H^ p(\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F})).
In the above definition, it is essential to allow the indices (i_0, \ldots , i_ p) to have repetitions.
Lemma 59.18.2. Notation and assumptions as in Definition 59.18.1. The functor \check{\mathcal{C}}^\bullet (\mathcal{U}, -) is exact on the category \textit{PAb}(\mathcal{C}).
In other words, if 0\to \mathcal{F}_1\to \mathcal{F}_2\to \mathcal{F}_3\to 0 is a short exact sequence of presheaves of abelian groups, then
0 \to \check{\mathcal{C}}^\bullet \left(\mathcal{U}, \mathcal{F}_1\right) \to \check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F}_2) \to \check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F}_3)\to 0
is a short exact sequence of complexes.
Proof.
This follows at once from the definition of a short exact sequence of presheaves. Namely, as the category of abelian presheaves is the category of functors on some category with values in \textit{Ab}, it is automatically an abelian category: a sequence \mathcal{F}_1\to \mathcal{F}_2\to \mathcal{F}_3 is exact in \textit{PAb} if and only if for all U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}), the sequence \mathcal{F}_1(U) \to \mathcal{F}_2(U) \to \mathcal{F}_3(U) is exact in \textit{Ab}. So the complex above is merely a product of short exact sequences in each degree. See also Cohomology on Sites, Lemma 21.9.1.
\square
This shows that \check{H}^\bullet (\mathcal{U}, -) is a \delta -functor. We now proceed to show that it is a universal \delta -functor. We thus need to show that it is an effaceable functor. We start by recalling the Yoneda lemma.
Lemma 59.18.3 (Yoneda Lemma). For any presheaf \mathcal{F} on a category \mathcal{C} and U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) there is a functorial isomorphism
\mathop{\mathrm{Hom}}\nolimits _{\textit{PSh}(\mathcal{C})}(h_ U, \mathcal{F}) = \mathcal{F}(U).
Proof.
See Categories, Lemma 4.3.5.
\square
Given a set E we denote (in this section) \mathbf{Z}[E] the free abelian group on E. In a formula \mathbf{Z}[E] = \bigoplus _{e \in E} \mathbf{Z}, i.e., \mathbf{Z}[E] is a free \mathbf{Z}-module having a basis consisting of the elements of E. Using this notation we introduce the free abelian presheaf on a presheaf of sets.
Definition 59.18.4. Let \mathcal{C} be a category. Given a presheaf of sets \mathcal{G}, we define the free abelian presheaf on \mathcal{G}, denoted \mathbf{Z}_\mathcal {G}, by the rule
\mathbf{Z}_\mathcal {G}(U) = \mathbf{Z}[\mathcal{G}(U)]
for U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) with restriction maps induced by the restriction maps of \mathcal{G}. In the special case \mathcal{G} = h_ U we write simply \mathbf{Z}_ U = \mathbf{Z}_{h_ U}.
The functor \mathcal{G} \mapsto \mathbf{Z}_\mathcal {G} is left adjoint to the forgetful functor \textit{PAb}(\mathcal{C}) \to \textit{PSh}(\mathcal{C}). Thus, for any presheaf \mathcal{F}, there is a canonical isomorphism
\mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})}(\mathbf{Z}_ U, \mathcal{F}) = \mathop{\mathrm{Hom}}\nolimits _{\textit{PSh}(\mathcal{C})}(h_ U, \mathcal{F}) = \mathcal{F}(U)
the last equality by the Yoneda lemma. In particular, we have the following result.
Lemma 59.18.5. Notation and assumptions as in Definition 59.18.1. The Čech complex \check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F}) can be described explicitly as follows
\begin{eqnarray*} \check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F}) & = & \left( \prod _{i_0 \in I} \mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})}(\mathbf{Z}_{U_{i_0}}, \mathcal{F}) \to \prod _{i_0, i_1 \in I} \mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})}( \mathbf{Z}_{U_{i_0} \times _ U U_{i_1}}, \mathcal{F}) \to \ldots \right) \\ & = & \mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})}\left( \left( \bigoplus _{i_0 \in I} \mathbf{Z}_{U_{i_0}} \leftarrow \bigoplus _{i_0, i_1 \in I} \mathbf{Z}_{U_{i_0} \times _ U U_{i_1}} \leftarrow \ldots \right), \mathcal{F}\right) \end{eqnarray*}
Proof.
This follows from the formula above. See Cohomology on Sites, Lemma 21.9.3.
\square
This reduces us to studying only the complex in the first argument of the last \mathop{\mathrm{Hom}}\nolimits .
Lemma 59.18.6. Notation and assumptions as in Definition 59.18.1. The complex of abelian presheaves
\begin{align*} \mathbf{Z}_\mathcal {U}^\bullet \quad : \quad \bigoplus _{i_0 \in I} \mathbf{Z}_{U_{i_0}} \leftarrow \bigoplus _{i_0, i_1 \in I} \mathbf{Z}_{U_{i_0} \times _ U U_{i_1}} \leftarrow \bigoplus _{i_0, i_1, i_2 \in I} \mathbf{Z}_{U_{i_0} \times _ U U_{i_1} \times _ U U_{i_2}} \leftarrow \ldots \end{align*}
is exact in all degrees except 0 in \textit{PAb}(\mathcal{C}).
Proof.
For any V\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) the complex of abelian groups \mathbf{Z}_\mathcal {U}^\bullet (V) is
\begin{matrix} \mathbf{Z}\left[ \coprod _{i_0\in I} \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U_{i_0})\right] \leftarrow \mathbf{Z}\left[ \coprod _{i_0, i_1 \in I} \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U_{i_0} \times _ U U_{i_1})\right] \leftarrow \ldots =
\\ \bigoplus _{\varphi : V \to U} \left( \mathbf{Z}\left[\coprod _{i_0 \in I} \mathop{\mathrm{Mor}}\nolimits _\varphi (V, U_{i_0})\right] \leftarrow \mathbf{Z}\left[\coprod _{i_0, i_1\in I} \mathop{\mathrm{Mor}}\nolimits _\varphi (V, U_{i_0}) \times \mathop{\mathrm{Mor}}\nolimits _\varphi (V, U_{i_1})\right] \leftarrow \ldots \right)
\end{matrix}
where
\mathop{\mathrm{Mor}}\nolimits _{\varphi }(V, U_ i) = \{ V \to U_ i \text{ such that } V \to U_ i \to U \text{ equals } \varphi \} .
Set S_\varphi = \coprod _{i\in I} \mathop{\mathrm{Mor}}\nolimits _\varphi (V, U_ i), so that
\mathbf{Z}_\mathcal {U}^\bullet (V) = \bigoplus _{\varphi : V \to U} \left( \mathbf{Z}[S_\varphi ] \leftarrow \mathbf{Z}[S_\varphi \times S_\varphi ] \leftarrow \mathbf{Z}[S_\varphi \times S_\varphi \times S_\varphi ] \leftarrow \ldots \right).
Thus it suffices to show that for each S = S_\varphi , the complex
\begin{align*} \mathbf{Z}[S] \leftarrow \mathbf{Z}[S \times S] \leftarrow \mathbf{Z}[S \times S \times S] \leftarrow \ldots \end{align*}
is exact in negative degrees. To see this, we can give an explicit homotopy. Fix s\in S and define K: n_{(s_0, \ldots , s_ p)} \mapsto n_{(s, s_0, \ldots , s_ p)}. One easily checks that K is a nullhomotopy for the operator
\delta : \eta _{(s_0, \ldots , s_ p)} \mapsto \sum \nolimits _{i = 0}^ p (-1)^ p \eta _{(s_0, \ldots , \hat s_ i, \ldots , s_ p)}.
See Cohomology on Sites, Lemma 21.9.4 for more details.
\square
Lemma 59.18.7. Notation and assumptions as in Definition 59.18.1. If \mathcal{I} is an injective object of \textit{PAb}(\mathcal{C}), then \check H^ p(\mathcal{U}, \mathcal{I}) = 0 for all p > 0.
Proof.
The Čech complex is the result of applying the functor \mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})}(-, \mathcal{I}) to the complex \mathbf{Z}^\bullet _\mathcal {U} , i.e.,
\check H^ p(\mathcal{U}, \mathcal{I}) = H^ p (\mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})} (\mathbf{Z}^\bullet _\mathcal {U}, \mathcal{I})).
But we have just seen that \mathbf{Z}^\bullet _\mathcal {U} is exact in negative degrees, and the functor \mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})}(-, \mathcal{I}) is exact, hence \mathop{\mathrm{Hom}}\nolimits _{\textit{PAb}(\mathcal{C})} (\mathbf{Z}^\bullet _\mathcal {U}, \mathcal{I}) is exact in positive degrees.
\square
Theorem 59.18.8. Notation and assumptions as in Definition 59.18.1. On \textit{PAb}(\mathcal{C}) the functors \check{H}^ p(\mathcal{U}, -) are the right derived functors of \check{H}^0(\mathcal{U}, -).
Proof.
By the Lemma 59.18.7, the functors \check H^ p(\mathcal{U}, -) are universal \delta -functors since they are effaceable. So are the right derived functors of \check H^0(\mathcal{U}, -). Since they agree in degree 0, they agree by the universal property of universal \delta -functors. For more details see Cohomology on Sites, Lemma 21.9.6.
\square
Comments (0)