Lemma 73.3.2. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
If $X' \to X$ is an isomorphism then $\{ X' \to X\} $ is a Zariski covering of $X$.
If $\{ X_ i \to X\} _{i\in I}$ is a Zariski covering and for each $i$ we have a Zariski covering $\{ X_{ij} \to X_ i\} _{j\in J_ i}$, then $\{ X_{ij} \to X\} _{i \in I, j\in J_ i}$ is a Zariski covering.
If $\{ X_ i \to X\} _{i\in I}$ is a Zariski covering and $X' \to X$ is a morphism of algebraic spaces then $\{ X' \times _ X X_ i \to X'\} _{i\in I}$ is a Zariski covering.
Comments (0)