Lemma 72.10.13. The property $\mathcal{P}(f) =$“$f$ is flat” is fpqc local on the base.

**Proof.**
We will use Lemma 72.9.4 to prove this. Assumptions (1) and (2) of that lemma follow from Morphisms of Spaces, Lemma 65.30.5. Let $Z' \to Z$ be a surjective flat morphism of affine schemes over $S$. Let $f : X \to Z$ be a morphism of algebraic spaces, and assume that the base change $f' : Z' \times _ Z X \to Z'$ is flat. We have to show that $f$ is flat. Let $U$ be a scheme and let $U \to X$ be surjective and étale. By Morphisms of Spaces, Lemma 65.30.5 again, it is enough to show that $U \to Z$ is flat. Since $f'$ is flat, and since $Z' \times _ Z U$ is a scheme étale over $Z' \times _ Z X$ we conclude (by the same lemma again) that $Z' \times _ Z U \to Z'$ is flat. As $\{ Z' \to Z\} $ is an fpqc covering we conclude that $U \to Z$ is flat by Descent, Lemma 35.20.15 as desired.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)