Lemma 83.3.3. Let $S$ be a scheme, and let $B$ be an algebraic space over $S$. Let $j = (t, s) : R \to U \times _ B U$ be a pre-relation of algebraic spaces over $B$. Let $U \to X$ be an $R$-invariant morphism of algebraic spaces over $B$. Let $X' \to X$ be any morphism of algebraic spaces.
Setting $U' = X' \times _ X U$, $R' = X' \times _ X R$ we obtain a pre-relation $j' : R' \to U' \times _ B U'$.
If $j$ is a relation, then $j'$ is a relation.
If $j$ is a pre-equivalence relation, then $j'$ is a pre-equivalence relation.
If $j$ is an equivalence relation, then $j'$ is an equivalence relation.
If $j$ comes from a groupoid in algebraic spaces $(U, R, s, t, c)$ over $B$, then
$(U, R, s, t, c)$ is a groupoid in algebraic spaces over $X$, and
$j'$ comes from the base change $(U', R', s', t', c')$ of this groupoid to $X'$, see Groupoids in Spaces, Lemma 78.11.6.
If $j$ comes from the action of a group algebraic space $G/B$ on $U$ as in Groupoids in Spaces, Lemma 78.15.1 then $j'$ comes from the induced action of $G$ on $U'$.
Comments (0)