The Stacks project

Example 83.5.12. There exist reduced quasi-separated algebraic spaces $X$, $Y$ and a pair of morphisms $a, b : Y \to X$ which agree on all $k$-valued points but are not equal. To get an example take $Y = \mathop{\mathrm{Spec}}(k[[x]])$ and

\[ X = \mathbf{A}^1_ k \Big/ \big (\Delta \amalg \{ (x, -x) \mid x \not= 0\} \big ) \]

the algebraic space of Spaces, Example 65.14.1. The two morphisms $a, b : Y \to X$ come from the two maps $x \mapsto x$ and $x \mapsto -x$ from $Y$ to $\mathbf{A}^1_ k = \mathop{\mathrm{Spec}}(k[x])$. On the generic point the two maps are the same because on the open part $x \not= 0$ of the space $X$ the functions $x$ and $-x$ are equal. On the closed point the maps are obviously the same. It is also true that $a \not= b$. This implies that Lemma 83.5.11 does not hold with assumption (3) replaced by the assumption that $X$ be quasi-separated. Namely, consider the diagram

\[ \xymatrix{ Y \ar[d]_{-1} \ar[r]_1 & Y \ar[d]^ a \\ Y \ar[r]^ a & X } \]

then the composition $a \circ (-1) = b$. Hence we can set $R = Y$, $U = Y$, $s = 1$, $t = -1$, $\phi = a$ to get an example of a set-theoretically invariant morphism which is not invariant.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 048Z. Beware of the difference between the letter 'O' and the digit '0'.