Lemma 59.49.1. Let \tau \in \{ Zariski, {\acute{e}tale}, smooth, syntomic, fppf\} . Let f : X \to Y be a morphism of schemes. Let
f_{big} : \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/X)_\tau ) \longrightarrow \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/Y)_\tau )
be the corresponding morphism of topoi as in Topologies, Lemma 34.3.16, 34.4.16, 34.5.10, 34.6.10, or 34.7.12.
The functor f_{big}^{-1} : \textit{Ab}((\mathit{Sch}/Y)_\tau ) \to \textit{Ab}((\mathit{Sch}/X)_\tau ) has a left adjoint
f_{big!} : \textit{Ab}((\mathit{Sch}/X)_\tau ) \to \textit{Ab}((\mathit{Sch}/Y)_\tau )
which is exact.
The functor f_{big}^* : \textit{Mod}((\mathit{Sch}/Y)_\tau , \mathcal{O}) \to \textit{Mod}((\mathit{Sch}/X)_\tau , \mathcal{O}) has a left adjoint
f_{big!} : \textit{Mod}((\mathit{Sch}/X)_\tau , \mathcal{O}) \to \textit{Mod}((\mathit{Sch}/Y)_\tau , \mathcal{O})
which is exact.
Moreover, the two functors f_{big!} agree on underlying sheaves of abelian groups.
Proof.
Recall that f_{big} is the morphism of topoi associated to the continuous and cocontinuous functor u : (\mathit{Sch}/X)_\tau \to (\mathit{Sch}/Y)_\tau , U/X \mapsto U/Y. Moreover, we have f_{big}^{-1}\mathcal{O} = \mathcal{O}. Hence the existence of f_{big!} follows from Modules on Sites, Lemma 18.16.2, respectively Modules on Sites, Lemma 18.41.1. Note that if U is an object of (\mathit{Sch}/X)_\tau then the functor u induces an equivalence of categories
u' : (\mathit{Sch}/X)_\tau /U \longrightarrow (\mathit{Sch}/Y)_\tau /U
because both sides of the arrow are equal to (\mathit{Sch}/U)_\tau . Hence the agreement of f_{big!} on underlying abelian sheaves follows from the discussion in Modules on Sites, Remark 18.41.2. The exactness of f_{big!} follows from Modules on Sites, Lemma 18.16.3 as the functor u above which commutes with fibre products and equalizers.
\square
Comments (0)