Lemma 66.14.3. Let $S$ be a scheme. Let $i : Z \to X$ be a closed immersion of algebraic spaces over $S$. There is a functor^{1} $i^! : \mathit{QCoh}(\mathcal{O}_ X) \to \mathit{QCoh}(\mathcal{O}_ Z)$ which is a right adjoint to $i_*$. (Compare Modules, Lemma 17.6.3.)

**Proof.**
Given quasi-coherent $\mathcal{O}_ X$-module $\mathcal{G}$ we consider the subsheaf $\mathcal{H}_ Z(\mathcal{G})$ of $\mathcal{G}$ of local sections annihilated by $\mathcal{I}$. By Lemma 66.14.2 there is a canonical largest quasi-coherent $\mathcal{O}_ X$-submodule $\mathcal{H}_ Z(\mathcal{G})'$. By construction we have

for any quasi-coherent $\mathcal{O}_ Z$-module $\mathcal{F}$. Hence we can set $i^!\mathcal{G} = i^*(\mathcal{H}_ Z(\mathcal{G})')$. Details omitted. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)