Lemma 59.46.3. Let $i : Z \to X$ be a closed immersion of schemes. Let $\mathcal{G}$ be a sheaf of sets on $Z_{\acute{e}tale}$. Let $\overline{x}$ be a geometric point of $X$. Then

where $*$ denotes a singleton set.

Lemma 59.46.3. Let $i : Z \to X$ be a closed immersion of schemes. Let $\mathcal{G}$ be a sheaf of sets on $Z_{\acute{e}tale}$. Let $\overline{x}$ be a geometric point of $X$. Then

\[ (i_{small, *}\mathcal{G})_{\overline{x}} = \left\{ \begin{matrix} *
& \text{if}
& \overline{x} \not\in Z
\\ \mathcal{G}_{\overline{x}}
& \text{if}
& \overline{x} \in Z
\end{matrix} \right. \]

where $*$ denotes a singleton set.

**Proof.**
Note that $i_{small, *}\mathcal{G}|_{U_{\acute{e}tale}} = *$ is the final object in the category of étale sheaves on $U$, i.e., the sheaf which associates a singleton set to each scheme étale over $U$. This explains the value of $(i_{small, *}\mathcal{G})_{\overline{x}}$ if $\overline{x} \not\in Z$.

Next, suppose that $\overline{x} \in Z$. Note that

\[ (i_{small, *}\mathcal{G})_{\overline{x}} = \mathop{\mathrm{colim}}\nolimits _{(U, \overline{u})} \mathcal{G}(U_ Z) \]

and on the other hand

\[ \mathcal{G}_{\overline{x}} = \mathop{\mathrm{colim}}\nolimits _{(V, \overline{v})} \mathcal{G}(V). \]

Let $\mathcal{C}_1 = \{ (U, \overline{u})\} ^{opp}$ be the opposite of the category of étale neighbourhoods of $\overline{x}$ in $X$, and let $\mathcal{C}_2 = \{ (V, \overline{v})\} ^{opp}$ be the opposite of the category of étale neighbourhoods of $\overline{x}$ in $Z$. The canonical map

\[ \mathcal{G}_{\overline{x}} \longrightarrow (i_{small, *}\mathcal{G})_{\overline{x}} \]

corresponds to the functor $F : \mathcal{C}_1 \to \mathcal{C}_2$, $F(U, \overline{u}) = (U_ Z, \overline{x})$. Now Lemmas 59.46.2 and 59.46.1 imply that $\mathcal{C}_1$ is cofinal in $\mathcal{C}_2$, see Categories, Definition 4.17.1. Hence it follows that the displayed arrow is an isomorphism, see Categories, Lemma 4.17.2. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: