Lemma 66.18.6. Let S be a scheme. Let X be an algebraic space over S. The functor X_{affine, {\acute{e}tale}} \to X_{\acute{e}tale} is special cocontinuous and induces an equivalence of topoi from \mathop{\mathit{Sh}}\nolimits (X_{affine, {\acute{e}tale}}) to \mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale}).
Proof. Omitted. Hint: compare with the proof of Topologies, Lemma 34.4.11. \square
Comments (0)