Lemma 35.18.2. Let $f : U \to V$ be an étale morphism of schemes. Let $u \in U$ and $v = f(u)$. Then $\dim _ u(U) = \dim _ v(V)$.

Proof. In the statement $\dim _ u(U)$ is the dimension of $U$ at $u$ as defined in Topology, Definition 5.10.1 as the minimum of the Krull dimensions of open neighbourhoods of $u$ in $U$. Similarly for $\dim _ v(V)$.

Let us show that $\dim _ v(V) \geq \dim _ u(U)$. Let $V'$ be an open neighbourhood of $v$ in $V$. Then there exists an open neighbourhood $U'$ of $u$ in $U$ contained in $f^{-1}(V')$ such that $\dim _ u(U) = \dim (U')$. Suppose that $Z_0 \subset Z_1 \subset \ldots \subset Z_ n$ is a chain of irreducible closed subschemes of $U'$. If $\xi _ i \in Z_ i$ is the generic point then we have specializations $\xi _ n \leadsto \xi _{n - 1} \leadsto \ldots \leadsto \xi _0$. This gives specializations $f(\xi _ n) \leadsto f(\xi _{n - 1}) \leadsto \ldots \leadsto f(\xi _0)$ in $V'$. Note that $f(\xi _ j) \not= f(\xi _ i)$ if $i \not= j$ as the fibres of $f$ are discrete (see Morphisms, Lemma 29.36.7). Hence we see that $\dim (V') \geq n$. The inequality $\dim _ v(V) \geq \dim _ u(U)$ follows formally.

Let us show that $\dim _ u(U) \geq \dim _ v(V)$. Let $U'$ be an open neighbourhood of $u$ in $U$. Note that $V' = f(U')$ is an open neighbourhood of $v$ by Morphisms, Lemma 29.25.10. Hence $\dim (V') \geq \dim _ v(V)$. Pick a chain $Z_0 \subset Z_1 \subset \ldots \subset Z_ n$ of irreducible closed subschemes of $V'$. Let $\xi _ i \in Z_ i$ be the generic point, so we have specializations $\xi _ n \leadsto \xi _{n - 1} \leadsto \ldots \leadsto \xi _0$. Since $\xi _0 \in f(U')$ we can find a point $\eta _0 \in U'$ with $f(\eta _0) = \xi _0$. Consider the map of local rings

$\mathcal{O}_{V', \xi _0} \longrightarrow \mathcal{O}_{U', \eta _0}$

which is a flat local ring map by Morphisms, Lemma 29.36.12. Note that the points $\xi _ i$ correspond to primes of the ring on the left by Schemes, Lemma 26.13.2. Hence by going down (see Algebra, Section 10.41) for the displayed ring map we can find a sequence of specializations $\eta _ n \leadsto \eta _{n - 1} \leadsto \ldots \leadsto \eta _0$ in $U'$ mapping to the sequence $\xi _ n \leadsto \xi _{n - 1} \leadsto \ldots \leadsto \xi _0$ under $f$. This implies that $\dim _ u(U) \geq \dim _ v(V)$. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04N4. Beware of the difference between the letter 'O' and the digit '0'.