Lemma 78.15.7 (Existence of quasi-splitting). In Situation 78.15.4 there exists an algebraic space $U'$, an étale morphism $U' \to U$, and a point $u' : \mathop{\mathrm{Spec}}(\kappa (u)) \to U'$ lying over $u : \mathop{\mathrm{Spec}}(\kappa (u)) \to U$ such that the restriction $R' = R|_{U'}$ of $R$ to $U'$ is quasi-split over $u'$.

**Proof.**
Let $f : (U', Z_{univ}, s', t', c') \to (U, R, s, t, c)$ be as constructed in Lemma 78.14.1. Recall that $R' = R \times _{(U \times _ S U)} (U' \times _ S U')$. Thus we get a morphism $(f, t', s') : Z_{univ} \to R'$ of groupoids in algebraic spaces

(by abuse of notation we indicate the morphisms in the two groupoids by the same symbols). Now, as $Z_{univ} \subset R \times _{s, U, g} U'$ is open and $R' \to R \times _{s, U, g} U'$ is étale (as a base change of $U' \to U$) we see that $Z_{univ} \to R'$ is an open immersion. By construction the morphisms $s', t' : Z_{univ} \to U'$ are finite. It remains to find the point $u'$ of $U'$.

We think of $u$ as a morphism $\mathop{\mathrm{Spec}}(\kappa (u)) \to U$ as in the statement of the lemma. Set $F_ u = R \times _{s, U} \mathop{\mathrm{Spec}}(\kappa (u))$. The morphism $F_ u \to \mathop{\mathrm{Spec}}(\kappa (u))$ is quasi-finite at $e(u)$ by assumption. Hence we can find a decomposition into open and closed subschemes

for some scheme $Z_ u$ finite over $\kappa (u)$ whose support is $e(u)$. Hence by the construction of $U'$ in Section 78.14 $(u, Z_ u)$ defines a $\mathop{\mathrm{Spec}}(\kappa (u))$-valued point $u'$ of $U'$. To finish the proof we have to show that $e'(u') \in Z_{univ}$ which is clear. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)