Lemma 99.10.3. Let $\mathcal{X}$, $\mathcal{Y}$ be algebraic stacks. Let $\mathcal{Z} \subset \mathcal{X}$ be a closed substack Assume $\mathcal{Y}$ is reduced. A morphism $f : \mathcal{Y} \to \mathcal{X}$ factors through $\mathcal{Z}$ if and only if $f(|\mathcal{Y}|) \subset |\mathcal{Z}|$.
Proof. Assume $f(|\mathcal{Y}|) \subset |\mathcal{Z}|$. Consider $\mathcal{Y} \times _\mathcal {X} \mathcal{Z} \to \mathcal{Y}$. There is an equivalence $\mathcal{Y} \times _\mathcal {X} \mathcal{Z} \to \mathcal{Y}'$ where $\mathcal{Y}'$ is a closed substack of $\mathcal{Y}$, see Lemmas 99.9.2 and 99.9.10. Using Lemmas 99.4.3, 99.8.5, and 99.9.5 we see that $|\mathcal{Y}'| = |\mathcal{Y}|$. Hence we have reduced the lemma to Lemma 99.10.2. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)