Processing math: 100%

The Stacks project

Lemma 10.125.3. Let R \to S be a ring map. Let \mathfrak q \subset S be a prime lying over the prime \mathfrak p of R. Assume

  1. R \to S is of finite type,

  2. \dim _{\mathfrak q}(S/R) = n, and

  3. \text{trdeg}_{\kappa (\mathfrak p)}\kappa (\mathfrak q) = r.

Then there exist f \in R, f \not\in \mathfrak p, g \in S, g \not\in \mathfrak q and a quasi-finite ring map

\varphi : R_ f[x_1, \ldots , x_ n] \longrightarrow S_ g

such that \varphi ^{-1}(\mathfrak qS_ g) = (\mathfrak p, x_{r + 1}, \ldots , x_ n)R_ f[x_{r + 1}, \ldots , x_ n]

Proof. After replacing S by a principal localization we may assume there exists a quasi-finite ring map \varphi : R[t_1, \ldots , t_ n] \to S, see Lemma 10.125.2. Set \mathfrak q' = \varphi ^{-1}(\mathfrak q). Let \overline{\mathfrak q}' \subset \kappa (\mathfrak p)[t_1, \ldots , t_ n] be the prime corresponding to \mathfrak q'. By Lemma 10.115.6 there exists a finite ring map \kappa (\mathfrak p)[x_1, \ldots , x_ n] \to \kappa (\mathfrak p)[t_1, \ldots , t_ n] such that the inverse image of \overline{\mathfrak q}' is (x_{r + 1}, \ldots , x_ n). Let \overline{h}_ i \in \kappa (\mathfrak p)[t_1, \ldots , t_ n] be the image of x_ i. We can find an element f \in R, f \not\in \mathfrak p and h_ i \in R_ f[t_1, \ldots , t_ n] which map to \overline{h}_ i in \kappa (\mathfrak p)[t_1, \ldots , t_ n]. Then the ring map

R_ f[x_1, \ldots , x_ n] \longrightarrow R_ f[t_1, \ldots , t_ n]

becomes finite after tensoring with \kappa (\mathfrak p). In particular, R_ f[t_1, \ldots , t_ n] is quasi-finite over R_ f[x_1, \ldots , x_ n] at the prime \mathfrak q'R_ f[t_1, \ldots , t_ n]. Hence, by Lemma 10.123.13 there exists a g \in R_ f[t_1, \ldots , t_ n], g \not\in \mathfrak q'R_ f[t_1, \ldots , t_ n] such that R_ f[x_1, \ldots , x_ n] \to R_ f[t_1, \ldots , t_ n, 1/g] is quasi-finite. Thus we see that the composition

R_ f[x_1, \ldots , x_ n] \longrightarrow R_ f[t_1, \ldots , t_ n, 1/g] \longrightarrow S_{\varphi (g)}

is quasi-finite and we win. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.