The Stacks project

Lemma 37.27.1. Let $f : X \to Y$ be a morphism of schemes. Assume $Y$ irreducible with generic point $\eta $ and $f$ of finite type. If $X_\eta $ has $n$ irreducible components, then there exists a nonempty open $V \subset Y$ such that for all $y \in V$ the fibre $X_ y$ has at least $n$ irreducible components.

Proof. As the question is purely topological we may replace $X$ and $Y$ by their reductions. In particular this implies that $Y$ is integral, see Properties, Lemma 28.3.4. Let $X_\eta = X_{1, \eta } \cup \ldots \cup X_{n, \eta }$ be the decomposition of $X_\eta $ into irreducible components. Let $X_ i \subset X$ be the reduced closed subscheme whose generic fibre is $X_{i, \eta }$. Note that $Z_{i, j} = X_ i \cap X_ j$ is a closed subset of $X_ i$ whose generic fibre $Z_{i, j, \eta }$ is nowhere dense in $X_{i, \eta }$. Hence after shrinking $Y$ we may assume that $Z_{i, j, y}$ is nowhere dense in $X_{i, y}$ for every $y \in Y$, see Lemma 37.24.3. After shrinking $Y$ some more we may assume that $X_ y = \bigcup X_{i, y}$ for $y \in Y$, see Lemma 37.24.5. Moreover, after shrinking $Y$ we may assume that each $X_ i \to Y$ is flat and of finite presentation, see Morphisms, Proposition 29.27.1. The morphisms $X_ i \to Y$ are open, see Morphisms, Lemma 29.25.10. Thus there exists an open neighbourhood $V$ of $\eta $ which is contained in $f(X_ i)$ for each $i$. For each $y \in V$ the schemes $X_{i, y}$ are nonempty closed subsets of $X_ y$, we have $X_ y = \bigcup X_{i, y}$ and the intersections $Z_{i, j, y} = X_{i, y} \cap X_{j, y}$ are not dense in $X_{i, y}$. Clearly this implies that $X_ y$ has at least $n$ irreducible components. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0554. Beware of the difference between the letter 'O' and the digit '0'.