The Stacks project

Lemma 37.25.4. Let $f : X \to Y$ be a morphism of schemes. Assume

  1. $Y$ is irreducible with generic point $\eta $,

  2. $X_\eta $ is geometrically reduced, and

  3. $f$ is of finite type.

Then there exists a nonempty open subscheme $V \subset Y$ such that $X_ V \to V$ has geometrically reduced fibres.

Proof. Let $Y' \subset Y$ be the reduction of $Y$. Let $X' \to Y'$ be the base change of $f$. Note that $Y' \to Y$ induces a bijection on points and that $X' \to X$ identifies fibres. Hence we may assume that $Y'$ is reduced, i.e., integral, see Properties, Lemma 28.3.4. We may also replace $Y$ by an affine open. Hence we may assume that $Y = \mathop{\mathrm{Spec}}(A)$ with $A$ a domain. Denote $K$ the fraction field of $A$. After shrinking $Y$ a bit we may also assume that $X \to Y$ is flat and of finite presentation, see Morphisms, Proposition 29.27.1.

As $X_\eta $ is geometrically reduced there exists an open dense subset $V \subset X_\eta $ such that $V \to \mathop{\mathrm{Spec}}(K)$ is smooth, see Varieties, Lemma 33.25.7. Let $U \subset X$ be the set of points where $f$ is smooth. By Morphisms, Lemma 29.34.15 we see that $V \subset U_\eta $. Thus the generic fibre of $U$ is dense in the generic fibre of $X$. Since $X_\eta $ is reduced, it follows that $U_\eta $ is scheme theoretically dense in $X_\eta $, see Morphisms, Lemma 29.7.8. We note that as $U \to Y$ is smooth all the fibres of $U \to Y$ are geometrically reduced. Thus it suffices to show that, after shrinking $Y$, for all $y \in Y$ the scheme $U_ y$ is scheme theoretically dense in $X_ y$, see Morphisms, Lemma 29.7.9. This follows from Lemma 37.23.4. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0578. Beware of the difference between the letter 'O' and the digit '0'.