Lemma 38.2.4. Let T \to S be an étale morphism. Let t \in T with image s \in S. Let M be a \mathcal{O}_{T, t}-module. Then
M\text{ flat over }\mathcal{O}_{S, s} \Leftrightarrow M\text{ flat over }\mathcal{O}_{T, t}.
Proof. We may replace S by an affine neighbourhood of s and after that T by an affine neighbourhood of t. Set \mathcal{F} = (\mathop{\mathrm{Spec}}(\mathcal{O}_{T, t}) \to T)_*\widetilde M. This is a quasi-coherent sheaf (see Schemes, Lemma 26.24.1 or argue directly) on T whose stalk at t is M (details omitted). Apply Lemma 38.2.3. \square
Comments (0)