The Stacks project

Lemma 38.2.3. Let $X \to T \to S$ be morphisms of schemes with $T \to S$ étale. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Let $x \in X$ be a point. Then

\[ \mathcal{F}\text{ flat over }S\text{ at }x \Leftrightarrow \mathcal{F}\text{ flat over }T\text{ at }x \]

In particular $\mathcal{F}$ is flat over $S$ if and only if $\mathcal{F}$ is flat over $T$.

Proof. As an étale morphism is a flat morphism (see Morphisms, Lemma 29.36.12) the implication “$\Leftarrow $” follows from Algebra, Lemma 10.39.4. For the converse assume that $\mathcal{F}$ is flat at $x$ over $S$. Denote $\tilde x \in X \times _ S T$ the point lying over $x$ in $X$ and over the image of $x$ in $T$ in $T$. Then $(X \times _ S T \to X)^*\mathcal{F}$ is flat at $\tilde x$ over $T$ via $\text{pr}_2 : X \times _ S T \to T$, see Morphisms, Lemma 29.25.7. The diagonal $\Delta _{T/S} : T \to T \times _ S T$ is an open immersion; combine Morphisms, Lemmas 29.35.13 and 29.36.5. So $X$ is identified with open subscheme of $X \times _ S T$, the restriction of $\text{pr}_2$ to this open is the given morphism $X \to T$, the point $\tilde x$ corresponds to the point $x$ in this open, and $(X \times _ S T \to X)^*\mathcal{F}$ restricted to this open is $\mathcal{F}$. Whence we see that $\mathcal{F}$ is flat at $x$ over $T$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05B9. Beware of the difference between the letter 'O' and the digit '0'.