Definition 38.5.5. Let S, X, \mathcal{F}, x, s be as in Definition 38.5.2. Consider a complete dévissage (Z_ k, Y_ k, i_ k, \pi _ k, \mathcal{G}_ k, \alpha _ k, z_ k, y_ k)_{k = 1, \ldots , n} of \mathcal{F}/X/S at x. Let us define a standard shrinking of this situation to be given by standard opens S' \subset S, X' \subset X, Z'_ k \subset Z_ k, and Y'_ k \subset Y_ k such that s_ k \in S', x_ k \in X', z_ k \in Z', and y_ k \in Y' and such that
is a one step dévissage of \mathcal{F}'/X'/S' at x where \mathcal{G}'_ k = \mathcal{G}_ k|_{Z'_ k} and \mathcal{F}' = \mathcal{F}|_{X'}.
Comments (0)