The Stacks project

38.5 Complete dévissage

In this section we explain what is a complete dévissage of a module and prove that such exist. The material in this section is mainly bookkeeping.

Definition 38.5.1. Let $S$ be a scheme. Let $X$ be locally of finite type over $S$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module of finite type. Let $s \in S$ be a point. A complete dévissage of $\mathcal{F}/X/S$ over $s$ is given by a diagram

\[ \xymatrix{ X & Z_1 \ar[l]^{i_1} \ar[d]^{\pi _1} \\ & Y_1 & Z_2 \ar[l]^{i_2} \ar[d]^{\pi _2} \\ & & Y_2 & Z_3 \ar[l] \ar[d] \\ & & & ... & ... \ar[l] \ar[d] \\ & & & & Y_ n } \]

of schemes over $S$, finite type quasi-coherent $\mathcal{O}_{Z_ k}$-modules $\mathcal{G}_ k$, and $\mathcal{O}_{Y_ k}$-module maps

\[ \alpha _ k : \mathcal{O}_{Y_ k}^{\oplus r_ k} \longrightarrow \pi _{k, *}\mathcal{G}_ k, \quad k = 1, \ldots , n \]

satisfying the following properties:

  1. $(Z_1, Y_1, i_1, \pi _1, \mathcal{G}_1)$ is a one step dévissage of $\mathcal{F}/X/S$ over $s$,

  2. the map $\alpha _ k$ induces an isomorphism

    \[ \kappa (\xi _ k)^{\oplus r_ k} \longrightarrow (\pi _{k, *}\mathcal{G}_ k)_{\xi _ k} \otimes _{\mathcal{O}_{Y_ k, \xi _ k}} \kappa (\xi _ k) \]

    where $\xi _ k \in (Y_ k)_ s$ is the unique generic point,

  3. for $k = 2, \ldots , n$ the system $(Z_ k, Y_ k, i_ k, \pi _ k, \mathcal{G}_ k)$ is a one step dévissage of $\mathop{\mathrm{Coker}}(\alpha _{k - 1})/Y_{k - 1}/S$ over $s$,

  4. $\mathop{\mathrm{Coker}}(\alpha _ n) = 0$.

In this case we say that $(Z_ k, Y_ k, i_ k, \pi _ k, \mathcal{G}_ k, \alpha _ k)_{k = 1, \ldots , n}$ is a complete dévissage of $\mathcal{F}/X/S$ over $s$.

Definition 38.5.2. Let $S$ be a scheme. Let $X$ be locally of finite type over $S$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module of finite type. Let $x \in X$ be a point with image $s \in S$. A complete dévissage of $\mathcal{F}/X/S$ at $x$ is given by a system

\[ (Z_ k, Y_ k, i_ k, \pi _ k, \mathcal{G}_ k, \alpha _ k, z_ k, y_ k)_{k = 1, \ldots , n} \]

such that $(Z_ k, Y_ k, i_ k, \pi _ k, \mathcal{G}_ k, \alpha _ k)$ is a complete dévissage of $\mathcal{F}/X/S$ over $s$, and such that

  1. $(Z_1, Y_1, i_1, \pi _1, \mathcal{G}_1, z_1, y_1)$ is a one step dévissage of $\mathcal{F}/X/S$ at $x$,

  2. for $k = 2, \ldots , n$ the system $(Z_ k, Y_ k, i_ k, \pi _ k, \mathcal{G}_ k, z_ k, y_ k)$ is a one step dévissage of $\mathop{\mathrm{Coker}}(\alpha _{k - 1})/Y_{k - 1}/S$ at $y_{k - 1}$.

Again we remark that a complete dévissage can only exist if $X$ and $S$ are affine.

Lemma 38.5.3. Let $S$, $X$, $\mathcal{F}$, $s$ be as in Definition 38.5.1. Let $(S', s') \to (S, s)$ be any morphism of pointed schemes. Let $(Z_ k, Y_ k, i_ k, \pi _ k, \mathcal{G}_ k, \alpha _ k)_{k = 1, \ldots , n}$ be a complete dévissage of $\mathcal{F}/X/S$ over $s$. Given this data let $X', Z'_ k, Y'_ k, i'_ k, \pi '_ k$ be the base changes of $X, Z_ k, Y_ k, i_ k, \pi _ k$ via $S' \to S$. Let $\mathcal{F}'$ be the pullback of $\mathcal{F}$ to $X'$ and let $\mathcal{G}'_ k$ be the pullback of $\mathcal{G}_ k$ to $Z'_ k$. Let $\alpha '_ k$ be the pullback of $\alpha _ k$ to $Y'_ k$. If $S'$ is affine, then $(Z'_ k, Y'_ k, i'_ k, \pi '_ k, \mathcal{G}'_ k, \alpha '_ k)_{k = 1, \ldots , n}$ is a complete dévissage of $\mathcal{F}'/X'/S'$ over $s'$.

Proof. By Lemma 38.4.4 we know that the base change of a one step dévissage is a one step dévissage. Hence it suffices to prove that formation of $\mathop{\mathrm{Coker}}(\alpha _ k)$ commutes with base change and that condition (2) of Definition 38.5.1 is preserved by base change. The first is true as $\pi '_{k, *}\mathcal{G}'_ k$ is the pullback of $\pi _{k, *}\mathcal{G}_ k$ (by Cohomology of Schemes, Lemma 30.5.1) and because $\otimes $ is right exact. The second because by the same token we have

\[ (\pi _{k, *}\mathcal{G}_ k)_{\xi _ k} \otimes _{\mathcal{O}_{Y_ k, \xi _ k}} \kappa (\xi _ k) \otimes _{\kappa (\xi _ k)} \kappa (\xi '_ k) \cong (\pi '_{k, *}\mathcal{G}'_ k)_{\xi '_ k} \otimes _{\mathcal{O}_{Y'_ k, \xi '_ k}} \kappa (\xi '_ k) \]

with obvious notation. $\square$

Lemma 38.5.4. Let $S$, $X$, $\mathcal{F}$, $x$, $s$ be as in Definition 38.5.2. Let $(S', s') \to (S, s)$ be a morphism of pointed schemes which induces an isomorphism $\kappa (s) = \kappa (s')$. Let $(Z_ k, Y_ k, i_ k, \pi _ k, \mathcal{G}_ k, \alpha _ k, z_ k, y_ k)_{k = 1, \ldots , n}$ be a complete dévissage of $\mathcal{F}/X/S$ at $x$. Let $(Z'_ k, Y'_ k, i'_ k, \pi '_ k, \mathcal{G}'_ k, \alpha '_ k)_{k = 1, \ldots , n}$ be as constructed in Lemma 38.5.3 and let $x' \in X'$ (resp. $z'_ k \in Z'$, $y'_ k \in Y'$) be the unique point mapping to both $x \in X$ (resp. $z_ k \in Z_ k$, $y_ k \in Y_ k$) and $s' \in S'$. If $S'$ is affine, then $(Z'_ k, Y'_ k, i'_ k, \pi '_ k, \mathcal{G}'_ k, \alpha '_ k, z'_ k, y'_ k)_{k = 1, \ldots , n}$ is a complete dévissage of $\mathcal{F}'/X'/S'$ at $x'$.

Definition 38.5.5. Let $S$, $X$, $\mathcal{F}$, $x$, $s$ be as in Definition 38.5.2. Consider a complete dévissage $(Z_ k, Y_ k, i_ k, \pi _ k, \mathcal{G}_ k, \alpha _ k, z_ k, y_ k)_{k = 1, \ldots , n}$ of $\mathcal{F}/X/S$ at $x$. Let us define a standard shrinking of this situation to be given by standard opens $S' \subset S$, $X' \subset X$, $Z'_ k \subset Z_ k$, and $Y'_ k \subset Y_ k$ such that $s_ k \in S'$, $x_ k \in X'$, $z_ k \in Z'$, and $y_ k \in Y'$ and such that

\[ (Z'_ k, Y'_ k, i'_ k, \pi '_ k, \mathcal{G}'_ k, \alpha '_ k, z_ k, y_ k)_{k = 1, \ldots , n} \]

is a one step dévissage of $\mathcal{F}'/X'/S'$ at $x$ where $\mathcal{G}'_ k = \mathcal{G}_ k|_{Z'_ k}$ and $\mathcal{F}' = \mathcal{F}|_{X'}$.

Lemma 38.5.6. With assumption and notation as in Definition 38.5.5 we have:

  1. If $S' \subset S$ is a standard open neighbourhood of $s$, then setting $X' = X_{S'}$, $Z'_ k = Z_{S'}$ and $Y'_ k = Y_{S'}$ we obtain a standard shrinking.

  2. Let $W \subset Y_ n$ be a standard open neighbourhood of $y$. Then there exists a standard shrinking with $Y'_ n = W \times _ S S'$.

  3. Let $U \subset X$ be an open neighbourhood of $x$. Then there exists a standard shrinking with $X' \subset U$.

Proof. Part (1) is immediate from Lemmas 38.5.4 and 38.4.7.

Proof of (2). For convenience denote $X = Y_0$. We apply Lemma 38.4.7 (2) to find a standard shrinking $S', Y'_{n - 1}, Z'_ n, Y'_ n$ of the one step dévissage of $\mathop{\mathrm{Coker}}(\alpha _{n - 1})/Y_{n - 1}/S$ at $y_{n - 1}$ with $Y'_ n = W \times _ S S'$. We may repeat this procedure and find a standard shrinking $S'', Y''_{n - 2}, Z''_{n - 1}, Y''_{n - 1}$ of the one step dévissage of $\mathop{\mathrm{Coker}}(\alpha _{n - 2})/Y_{n - 2}/S$ at $y_{n - 2}$ with $Y''_{n - 1} = Y'_{n - 1} \times _ S S''$. We may continue in this manner until we obtain $S^{(n)}, Y^{(n)}_0, Z^{(n)}_1, Y^{(n)}_1$. At this point it is clear that we obtain our desired standard shrinking by taking $S^{(n)}$, $X^{(n)}$, $Z_ k^{(n - k)} \times _ S S^{(n)}$, and $Y_ k^{(n - k)} \times _ S S^{(n)}$ with the desired property.

Proof of (3). We use induction on the length of the complete dévissage. First we apply Lemma 38.4.7 (3) to find a standard shrinking $S', X', Z'_1, Y'_1$ of the one step dévissage of $\mathcal{F}/X/S$ at $x$ with $X' \subset U$. If $n = 1$, then we are done. If $n > 1$, then by induction we can find a standard shrinking $S''$, $Y''_1$, $Z''_ k$, and $Y''_ k$ of the complete dévissage $(Z_ k, Y_ k, i_ k, \pi _ k, \mathcal{G}_ k, \alpha _ k, z_ k, y_ k)_{k = 2, \ldots , n}$ of $\mathop{\mathrm{Coker}}(\alpha _1)/Y_1/S$ at $x$ such that $Y''_1 \subset Y'_1$. Using Lemma 38.4.7 (2) we can find $S''' \subset S'$, $X''' \subset X'$, $Z'''_1$ and $Y'''_1 = Y''_1 \times _ S S'''$ which is a standard shrinking. The solution to our problem is to take

\[ S''', X''', Z'''_1, Y'''_1, Z''_2 \times _ S S''', Y''_2 \times _ S S''', \ldots , Z''_ n \times _ S S''', Y''_ n \times _ S S''' \]

This ends the proof of the lemma. $\square$

Proposition 38.5.7. Let $S$ be a scheme. Let $X$ be locally of finite type over $S$. Let $x \in X$ be a point with image $s \in S$. There exists a commutative diagram

\[ \xymatrix{ (X, x) \ar[d] & (X', x') \ar[l]^ g \ar[d] \\ (S, s) & (S', s') \ar[l] } \]

of pointed schemes such that the horizontal arrows are elementary étale neighbourhoods and such that $g^*\mathcal{F}/X'/S'$ has a complete dévissage at $x$.

Proof. We prove this by induction on the integer $d = \dim _ x(\text{Supp}(\mathcal{F}_ s))$. By Lemma 38.4.3 there exists a diagram

\[ \xymatrix{ (X, x) \ar[d] & (X', x') \ar[l]^ g \ar[d] \\ (S, s) & (S', s') \ar[l] } \]

of pointed schemes such that the horizontal arrows are elementary étale neighbourhoods and such that $g^*\mathcal{F}/X'/S'$ has a one step dévissage at $x'$. The local nature of the problem implies that we may replace $(X, x) \to (S, s)$ by $(X', x') \to (S', s')$. Thus after doing so we may assume that there exists a one step dévissage $(Z_1, Y_1, i_1, \pi _1, \mathcal{G}_1)$ of $\mathcal{F}/X/S$ at $x$.

We apply Lemma 38.4.9 to find a map

\[ \alpha _1 : \mathcal{O}_{Y_1}^{\oplus r_1} \longrightarrow \pi _{1, *}\mathcal{G}_1 \]

which induces an isomorphism of vector spaces over $\kappa (\xi _1)$ where $\xi _1 \in Y_1$ is the unique generic point of the fibre of $Y_1$ over $s$. Moreover $\dim _{y_1}(\text{Supp}(\mathop{\mathrm{Coker}}(\alpha _1)_ s)) < d$. It may happen that the stalk of $\mathop{\mathrm{Coker}}(\alpha _1)_ s$ at $y_1$ is zero. In this case we may shrink $Y_1$ by Lemma 38.4.7 (2) and assume that $\mathop{\mathrm{Coker}}(\alpha _1) = 0$ so we obtain a complete dévissage of length zero.

Assume now that the stalk of $\mathop{\mathrm{Coker}}(\alpha _1)_ s$ at $y_1$ is not zero. In this case, by induction, there exists a commutative diagram

38.5.7.1
\begin{equation} \label{flat-equation-overcome-this} \vcenter { \xymatrix{ (Y_1, y_1) \ar[d] & (Y'_1, y'_1) \ar[l]^ h \ar[d] \\ (S, s) & (S', s') \ar[l] } } \end{equation}

of pointed schemes such that the horizontal arrows are elementary étale neighbourhoods and such that $h^*\mathop{\mathrm{Coker}}(\alpha _1)/Y'_1/S'$ has a complete dévissage

\[ (Z_ k, Y_ k, i_ k, \pi _ k, \mathcal{G}_ k, \alpha _ k, z_ k, y_ k)_{k = 2, \ldots , n} \]

at $y'_1$. (In particular $i_2 : Z_2 \to Y'_1$ is a closed immersion into $Y'_2$.) At this point we apply Lemma 38.4.8 to $S, X, \mathcal{F}, x, s$, the system $(Z_1, Y_1, i_1, \pi _1, \mathcal{G}_1)$ and diagram (38.5.7.1). We obtain a diagram

\[ \xymatrix{ & & (X'', x'') \ar[lld] \ar[d] & (Z''_1, z''_1) \ar[l] \ar[lld] \ar[d] \\ (X, x) \ar[d] & (Z_1, z_1) \ar[l] \ar[d] & (S'', s'') \ar[lld] & (Y''_1, y''_1) \ar[lld] \ar[l] \\ (S, s) & (Y_1, y_1) \ar[l] } \]

with all the properties as listed in the referenced lemma. In particular $Y''_1 \subset Y'_1 \times _{S'} S''$. Set $X_1 = Y'_1 \times _{S'} S''$ and let $\mathcal{F}_1$ denote the pullback of $\mathop{\mathrm{Coker}}(\alpha _1)$. By Lemma 38.5.4 the system

38.5.7.2
\begin{equation} \label{flat-equation-shrink-this} (Z_ k \times _{S'} S'', Y_ k \times _{S'} S'', i''_ k, \pi ''_ k, \mathcal{G}''_ k, \alpha ''_ k, z''_ k, y''_ k)_{k = 2, \ldots , n} \end{equation}

is a complete dévissage of $\mathcal{F}_1$ to $X_1$. Again, the nature of the problem allows us to replace $(X, x) \to (S, s)$ by $(X'', x'') \to (S'', s'')$. In this we see that we may assume:

  1. There exists a one step dévissage $(Z_1, Y_1, i_1, \pi _1, \mathcal{G}_1)$ of $\mathcal{F}/X/S$ at $x$,

  2. there exists an $\alpha _1 : \mathcal{O}_{Y_1}^{\oplus r_1} \to \pi _{1, *}\mathcal{G}_1$ such that $\alpha \otimes \kappa (\xi _1)$ is an isomorphism,

  3. $Y_1 \subset X_1$ is open, $y_1 = x_1$, and $\mathcal{F}_1|_{Y_1} \cong \mathop{\mathrm{Coker}}(\alpha _1)$, and

  4. there exists a complete dévissage $(Z_ k, Y_ k, i_ k, \pi _ k, \mathcal{G}_ k, \alpha _ k, z_ k, y_ k)_{k = 2, \ldots , n}$ of $\mathcal{F}_1/X_1/S$ at $x_1$.

To finish the proof all we have to do is shrink the one step dévissage and the complete dévissage such that they fit together to a complete dévissage. (We suggest the reader do this on their own using Lemmas 38.4.7 and 38.5.6 instead of reading the proof that follows.) Since $Y_1 \subset X_1$ is an open neighbourhood of $x_1$ we may apply Lemma 38.5.6 (3) to find a standard shrinking $S', X'_1, Z'_2, Y'_2, \ldots , Y'_ n$ of the datum (d) so that $X'_1 \subset Y_1$. Note that $X'_1$ is also a standard open of the affine scheme $Y_1$. Next, we shrink the datum (a) as follows: first we shrink the base $S$ to $S'$, see Lemma 38.4.7 (1) and then we shrink the result to $S''$, $X''$, $Z''_1$, $Y''_1$ using Lemma 38.4.7 (2) such that eventually $Y''_1 = X'_1 \times _ S S''$ and $S'' \subset S'$. Then we see that

\[ Z''_1, Y''_1, Z'_2 \times _{S'} S'', Y'_2 \times _{S'} S'', \ldots , Y'_ n \times _{S'} S'' \]

gives the complete dévissage we were looking for. $\square$

Some more bookkeeping gives the following consequence.

Lemma 38.5.8. Let $X \to S$ be a finite type morphism of schemes. Let $\mathcal{F}$ be a finite type quasi-coherent $\mathcal{O}_ X$-module. Let $s \in S$ be a point. There exists an elementary étale neighbourhood $(S', s') \to (S, s)$ and étale morphisms $h_ i : Y_ i \to X_{S'}$, $i = 1, \ldots , n$ such that for each $i$ there exists a complete dévissage of $\mathcal{F}_ i/Y_ i/S'$ over $s'$, where $\mathcal{F}_ i$ is the pullback of $\mathcal{F}$ to $Y_ i$ and such that $X_ s = (X_{S'})_{s'} \subset \bigcup h_ i(Y_ i)$.

Proof. For every point $x \in X_ s$ we can find a diagram

\[ \xymatrix{ (X, x) \ar[d] & (X', x') \ar[l]^ g \ar[d] \\ (S, s) & (S', s') \ar[l] } \]

of pointed schemes such that the horizontal arrows are elementary étale neighbourhoods and such that $g^*\mathcal{F}/X'/S'$ has a complete dévissage at $x'$. As $X \to S$ is of finite type the fibre $X_ s$ is quasi-compact, and since each $g : X' \to X$ as above is open we can cover $X_ s$ by a finite union of $g(X'_{s'})$. Thus we can find a finite family of such diagrams

\[ \vcenter { \xymatrix{ (X, x) \ar[d] & (X'_ i, x'_ i) \ar[l]^{g_ i} \ar[d] \\ (S, s) & (S'_ i, s'_ i) \ar[l] } } \quad i = 1, \ldots , n \]

such that $X_ s = \bigcup g_ i(X'_ i)$. Set $S' = S'_1 \times _ S \ldots \times _ S S'_ n$ and let $Y_ i = X_ i \times _{S'_ i} S'$ be the base change of $X'_ i$ to $S'$. By Lemma 38.5.3 we see that the pullback of $\mathcal{F}$ to $Y_ i$ has a complete dévissage over $s$ and we win. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05HG. Beware of the difference between the letter 'O' and the digit '0'.