The Stacks project

Lemma 38.5.6. With assumption and notation as in Definition 38.5.5 we have:

  1. If $S' \subset S$ is a standard open neighbourhood of $s$, then setting $X' = X_{S'}$, $Z'_ k = Z_{S'}$ and $Y'_ k = Y_{S'}$ we obtain a standard shrinking.

  2. Let $W \subset Y_ n$ be a standard open neighbourhood of $y$. Then there exists a standard shrinking with $Y'_ n = W \times _ S S'$.

  3. Let $U \subset X$ be an open neighbourhood of $x$. Then there exists a standard shrinking with $X' \subset U$.

Proof. Part (1) is immediate from Lemmas 38.5.4 and 38.4.7.

Proof of (2). For convenience denote $X = Y_0$. We apply Lemma 38.4.7 (2) to find a standard shrinking $S', Y'_{n - 1}, Z'_ n, Y'_ n$ of the one step dévissage of $\mathop{\mathrm{Coker}}(\alpha _{n - 1})/Y_{n - 1}/S$ at $y_{n - 1}$ with $Y'_ n = W \times _ S S'$. We may repeat this procedure and find a standard shrinking $S'', Y''_{n - 2}, Z''_{n - 1}, Y''_{n - 1}$ of the one step dévissage of $\mathop{\mathrm{Coker}}(\alpha _{n - 2})/Y_{n - 2}/S$ at $y_{n - 2}$ with $Y''_{n - 1} = Y'_{n - 1} \times _ S S''$. We may continue in this manner until we obtain $S^{(n)}, Y^{(n)}_0, Z^{(n)}_1, Y^{(n)}_1$. At this point it is clear that we obtain our desired standard shrinking by taking $S^{(n)}$, $X^{(n)}$, $Z_ k^{(n - k)} \times _ S S^{(n)}$, and $Y_ k^{(n - k)} \times _ S S^{(n)}$ with the desired property.

Proof of (3). We use induction on the length of the complete dévissage. First we apply Lemma 38.4.7 (3) to find a standard shrinking $S', X', Z'_1, Y'_1$ of the one step dévissage of $\mathcal{F}/X/S$ at $x$ with $X' \subset U$. If $n = 1$, then we are done. If $n > 1$, then by induction we can find a standard shrinking $S''$, $Y''_1$, $Z''_ k$, and $Y''_ k$ of the complete dévissage $(Z_ k, Y_ k, i_ k, \pi _ k, \mathcal{G}_ k, \alpha _ k, z_ k, y_ k)_{k = 2, \ldots , n}$ of $\mathop{\mathrm{Coker}}(\alpha _1)/Y_1/S$ at $x$ such that $Y''_1 \subset Y'_1$. Using Lemma 38.4.7 (2) we can find $S''' \subset S'$, $X''' \subset X'$, $Z'''_1$ and $Y'''_1 = Y''_1 \times _ S S'''$ which is a standard shrinking. The solution to our problem is to take

\[ S''', X''', Z'''_1, Y'''_1, Z''_2 \times _ S S''', Y''_2 \times _ S S''', \ldots , Z''_ n \times _ S S''', Y''_ n \times _ S S''' \]

This ends the proof of the lemma. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05HM. Beware of the difference between the letter 'O' and the digit '0'.