Proof.
Part (1) is immediate from Lemmas 38.5.4 and 38.4.7.
Proof of (2). For convenience denote X = Y_0. We apply Lemma 38.4.7 (2) to find a standard shrinking S', Y'_{n - 1}, Z'_ n, Y'_ n of the one step dévissage of \mathop{\mathrm{Coker}}(\alpha _{n - 1})/Y_{n - 1}/S at y_{n - 1} with Y'_ n = W \times _ S S'. We may repeat this procedure and find a standard shrinking S'', Y''_{n - 2}, Z''_{n - 1}, Y''_{n - 1} of the one step dévissage of \mathop{\mathrm{Coker}}(\alpha _{n - 2})/Y_{n - 2}/S at y_{n - 2} with Y''_{n - 1} = Y'_{n - 1} \times _ S S''. We may continue in this manner until we obtain S^{(n)}, Y^{(n)}_0, Z^{(n)}_1, Y^{(n)}_1. At this point it is clear that we obtain our desired standard shrinking by taking S^{(n)}, X^{(n)}, Z_ k^{(n - k)} \times _ S S^{(n)}, and Y_ k^{(n - k)} \times _ S S^{(n)} with the desired property.
Proof of (3). We use induction on the length of the complete dévissage. First we apply Lemma 38.4.7 (3) to find a standard shrinking S', X', Z'_1, Y'_1 of the one step dévissage of \mathcal{F}/X/S at x with X' \subset U. If n = 1, then we are done. If n > 1, then by induction we can find a standard shrinking S'', Y''_1, Z''_ k, and Y''_ k of the complete dévissage (Z_ k, Y_ k, i_ k, \pi _ k, \mathcal{G}_ k, \alpha _ k, z_ k, y_ k)_{k = 2, \ldots , n} of \mathop{\mathrm{Coker}}(\alpha _1)/Y_1/S at x such that Y''_1 \subset Y'_1. Using Lemma 38.4.7 (2) we can find S''' \subset S', X''' \subset X', Z'''_1 and Y'''_1 = Y''_1 \times _ S S''' which is a standard shrinking. The solution to our problem is to take
S''', X''', Z'''_1, Y'''_1, Z''_2 \times _ S S''', Y''_2 \times _ S S''', \ldots , Z''_ n \times _ S S''', Y''_ n \times _ S S'''
This ends the proof of the lemma.
\square
Comments (0)