The Stacks project

Proposition 38.5.7. Let $S$ be a scheme. Let $X$ be locally of finite type over $S$. Let $x \in X$ be a point with image $s \in S$. There exists a commutative diagram

\[ \xymatrix{ (X, x) \ar[d] & (X', x') \ar[l]^ g \ar[d] \\ (S, s) & (S', s') \ar[l] } \]

of pointed schemes such that the horizontal arrows are elementary étale neighbourhoods and such that $g^*\mathcal{F}/X'/S'$ has a complete dévissage at $x$.

Proof. We prove this by induction on the integer $d = \dim _ x(\text{Supp}(\mathcal{F}_ s))$. By Lemma 38.4.3 there exists a diagram

\[ \xymatrix{ (X, x) \ar[d] & (X', x') \ar[l]^ g \ar[d] \\ (S, s) & (S', s') \ar[l] } \]

of pointed schemes such that the horizontal arrows are elementary étale neighbourhoods and such that $g^*\mathcal{F}/X'/S'$ has a one step dévissage at $x'$. The local nature of the problem implies that we may replace $(X, x) \to (S, s)$ by $(X', x') \to (S', s')$. Thus after doing so we may assume that there exists a one step dévissage $(Z_1, Y_1, i_1, \pi _1, \mathcal{G}_1)$ of $\mathcal{F}/X/S$ at $x$.

We apply Lemma 38.4.9 to find a map

\[ \alpha _1 : \mathcal{O}_{Y_1}^{\oplus r_1} \longrightarrow \pi _{1, *}\mathcal{G}_1 \]

which induces an isomorphism of vector spaces over $\kappa (\xi _1)$ where $\xi _1 \in Y_1$ is the unique generic point of the fibre of $Y_1$ over $s$. Moreover $\dim _{y_1}(\text{Supp}(\mathop{\mathrm{Coker}}(\alpha _1)_ s)) < d$. It may happen that the stalk of $\mathop{\mathrm{Coker}}(\alpha _1)_ s$ at $y_1$ is zero. In this case we may shrink $Y_1$ by Lemma 38.4.7 (2) and assume that $\mathop{\mathrm{Coker}}(\alpha _1) = 0$ so we obtain a complete dévissage of length zero.

Assume now that the stalk of $\mathop{\mathrm{Coker}}(\alpha _1)_ s$ at $y_1$ is not zero. In this case, by induction, there exists a commutative diagram

38.5.7.1
\begin{equation} \label{flat-equation-overcome-this} \vcenter { \xymatrix{ (Y_1, y_1) \ar[d] & (Y'_1, y'_1) \ar[l]^ h \ar[d] \\ (S, s) & (S', s') \ar[l] } } \end{equation}

of pointed schemes such that the horizontal arrows are elementary étale neighbourhoods and such that $h^*\mathop{\mathrm{Coker}}(\alpha _1)/Y'_1/S'$ has a complete dévissage

\[ (Z_ k, Y_ k, i_ k, \pi _ k, \mathcal{G}_ k, \alpha _ k, z_ k, y_ k)_{k = 2, \ldots , n} \]

at $y'_1$. (In particular $i_2 : Z_2 \to Y'_1$ is a closed immersion into $Y'_2$.) At this point we apply Lemma 38.4.8 to $S, X, \mathcal{F}, x, s$, the system $(Z_1, Y_1, i_1, \pi _1, \mathcal{G}_1)$ and diagram (38.5.7.1). We obtain a diagram

\[ \xymatrix{ & & (X'', x'') \ar[lld] \ar[d] & (Z''_1, z''_1) \ar[l] \ar[lld] \ar[d] \\ (X, x) \ar[d] & (Z_1, z_1) \ar[l] \ar[d] & (S'', s'') \ar[lld] & (Y''_1, y''_1) \ar[lld] \ar[l] \\ (S, s) & (Y_1, y_1) \ar[l] } \]

with all the properties as listed in the referenced lemma. In particular $Y''_1 \subset Y'_1 \times _{S'} S''$. Set $X_1 = Y'_1 \times _{S'} S''$ and let $\mathcal{F}_1$ denote the pullback of $\mathop{\mathrm{Coker}}(\alpha _1)$. By Lemma 38.5.4 the system

38.5.7.2
\begin{equation} \label{flat-equation-shrink-this} (Z_ k \times _{S'} S'', Y_ k \times _{S'} S'', i''_ k, \pi ''_ k, \mathcal{G}''_ k, \alpha ''_ k, z''_ k, y''_ k)_{k = 2, \ldots , n} \end{equation}

is a complete dévissage of $\mathcal{F}_1$ to $X_1$. Again, the nature of the problem allows us to replace $(X, x) \to (S, s)$ by $(X'', x'') \to (S'', s'')$. In this we see that we may assume:

  1. There exists a one step dévissage $(Z_1, Y_1, i_1, \pi _1, \mathcal{G}_1)$ of $\mathcal{F}/X/S$ at $x$,

  2. there exists an $\alpha _1 : \mathcal{O}_{Y_1}^{\oplus r_1} \to \pi _{1, *}\mathcal{G}_1$ such that $\alpha \otimes \kappa (\xi _1)$ is an isomorphism,

  3. $Y_1 \subset X_1$ is open, $y_1 = x_1$, and $\mathcal{F}_1|_{Y_1} \cong \mathop{\mathrm{Coker}}(\alpha _1)$, and

  4. there exists a complete dévissage $(Z_ k, Y_ k, i_ k, \pi _ k, \mathcal{G}_ k, \alpha _ k, z_ k, y_ k)_{k = 2, \ldots , n}$ of $\mathcal{F}_1/X_1/S$ at $x_1$.

To finish the proof all we have to do is shrink the one step dévissage and the complete dévissage such that they fit together to a complete dévissage. (We suggest the reader do this on their own using Lemmas 38.4.7 and 38.5.6 instead of reading the proof that follows.) Since $Y_1 \subset X_1$ is an open neighbourhood of $x_1$ we may apply Lemma 38.5.6 (3) to find a standard shrinking $S', X'_1, Z'_2, Y'_2, \ldots , Y'_ n$ of the datum (d) so that $X'_1 \subset Y_1$. Note that $X'_1$ is also a standard open of the affine scheme $Y_1$. Next, we shrink the datum (a) as follows: first we shrink the base $S$ to $S'$, see Lemma 38.4.7 (1) and then we shrink the result to $S''$, $X''$, $Z''_1$, $Y''_1$ using Lemma 38.4.7 (2) such that eventually $Y''_1 = X'_1 \times _ S S''$ and $S'' \subset S'$. Then we see that

\[ Z''_1, Y''_1, Z'_2 \times _{S'} S'', Y'_2 \times _{S'} S'', \ldots , Y'_ n \times _{S'} S'' \]

gives the complete dévissage we were looking for. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05HR. Beware of the difference between the letter 'O' and the digit '0'.