Lemma 37.25.4. Let $f : X \to S$ be a morphism which is locally of finite type. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module of finite type. Let $U \subset X$ be an open subscheme. Let $g : S' \to S$ be a morphism of schemes, let $f' : X' = X_{S'} \to S'$ be the base change of $f$, let $g' : X' \to X$ be the projection, set $\mathcal{F}' = (g')^*\mathcal{F}$, and set $U' = (g')^{-1}(U)$. Finally, let $s' \in S'$ with image $s = g(s')$. In this case

\[ \text{Ass}_{X_ s}(\mathcal{F}_ s) \subset U_ s \Leftrightarrow \text{Ass}_{X'_{s'}}(\mathcal{F}'_{s'}) \subset U'_{s'}. \]

**Proof.**
This follows immediately from Divisors, Lemma 31.7.3. See also Divisors, Remark 31.7.4.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)