Lemma 13.4.16. An exact functor of pre-triangulated categories is additive.

**Proof.**
Let $F : \mathcal{D} \to \mathcal{D}'$ be an exact functor of pre-triangulated categories. Since $(0, 0, 0, 1_0, 1_0, 0)$ is a distinguished triangle of $\mathcal{D}$ the triangle

is distinguished in $\mathcal{D}'$. This implies that $1_{F(0)} \circ 1_{F(0)}$ is zero, see Lemma 13.4.1. Hence $F(0)$ is the zero object of $\mathcal{D}'$. This also implies that $F$ applied to any zero morphism is zero (since a morphism in an additive category is zero if and only if it factors through the zero object). Next, using that $(X, X \oplus Y, Y, (1, 0), (0, 1), 0)$ is a distinguished triangle, we see that $(F(X), F(X \oplus Y), F(Y), F(1, 0), F(0, 1), 0)$ is one too. This implies that the map $F(1, 0) \oplus F(0, 1) : F(X) \oplus F(Y) \to F(X \oplus Y)$ is an isomorphism, see Lemma 13.4.10. We omit the rest of the argument. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: