Lemma 13.4.17. An exact functor of pre-triangulated categories is additive.

**Proof.**
Let $F : \mathcal{D} \to \mathcal{D}'$ be an exact functor of pre-triangulated categories. Since $(0, 0, 0, 1_0, 1_0, 0)$ is a distinguished triangle of $\mathcal{D}$ the triangle

is distinguished in $\mathcal{D}'$. This implies that $1_{F(0)} \circ 1_{F(0)}$ is zero, see Lemma 13.4.1. Hence $F(0)$ is the zero object of $\mathcal{D}'$. This also implies that $F$ applied to any zero morphism is zero (since a morphism in an additive category is zero if and only if it factors through the zero object). Next, using that $(X, X \oplus Y, Y, (1, 0), (0, 1), 0)$ is a distinguished triangle by Lemma 13.4.11 part (3), we see that $(F(X), F(X \oplus Y), F(Y), F(1, 0), F(0, 1), 0)$ is one too. This implies that the map $F(X) \oplus F(Y) \to F(X \oplus Y)$ is an isomorphism by Lemma 13.4.11 part (2). To finish we apply Homology, Lemma 12.7.1. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (3)

Comment #7903 by Elías Guisado on

Comment #7904 by Elías Guisado on

Comment #8164 by Aise Johan de Jong on

There are also: