The Stacks project

Lemma 67.31.1. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$. Let $x \in |X|$. The following are equivalent

  1. for some commutative diagram

    \[ \xymatrix{ U \ar[d]_ a \ar[r]_ h & V \ar[d]^ b \\ X \ar[r]^ f & Y } \]

    where $U$ and $V$ are schemes, $a, b$ are étale, and $u \in U$ mapping to $x$ the module $a^*\mathcal{F}$ is flat at $u$ over $V$,

  2. the stalk $\mathcal{F}_{\overline{x}}$ is flat over the étale local ring $\mathcal{O}_{Y, \overline{y}}$ where $\overline{x}$ is any geometric point lying over $x$ and $\overline{y} = f \circ \overline{x}$.

Proof. During this proof we fix a geometric proof $\overline{x} : \mathop{\mathrm{Spec}}(k) \to X$ over $x$ and we denote $\overline{y} = f \circ \overline{x}$ its image in $Y$. Given a diagram as in (1) we can find a geometric point $\overline{u} : \mathop{\mathrm{Spec}}(k) \to U$ lying over $u$ with $\overline{x} = a \circ \overline{u}$, see Properties of Spaces, Lemma 66.19.4. Set $\overline{v} = h \circ \overline{u}$ with image $v \in V$. We know that

\[ \mathcal{O}_{X, \overline{x}} = \mathcal{O}_{U, u}^{sh} \quad \text{and}\quad \mathcal{O}_{Y, \overline{y}} = \mathcal{O}_{V, v}^{sh} \]

see Properties of Spaces, Lemma 66.22.1. We obtain a commutative diagram

\[ \xymatrix{ \mathcal{O}_{U, u} \ar[r] & \mathcal{O}_{X, \overline{x}} \\ \mathcal{O}_{V, v} \ar[u] \ar[r] & \mathcal{O}_{Y, \overline{y}} \ar[u] } \]

of local rings. Finally, we have

\[ \mathcal{F}_{\overline{x}} = (\varphi ^*\mathcal{F})_ u \otimes _{\mathcal{O}_{U, u}} \mathcal{O}_{X, \overline{x}} \]

by Properties of Spaces, Lemma 66.29.4. Thus Algebra, Lemma 10.39.9 tells us $(\varphi ^*\mathcal{F})_ u$ is flat over $\mathcal{O}_{V, v}$ if and only if $\mathcal{F}_{\overline{x}}$ is flat over $\mathcal{O}_{V, v}$. Hence the result follows from More on Flatness, Lemma 38.2.5. $\square$


Comments (1)

Comment #8839 by ZL on

Typo: In the last three lines, is written as for twice.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05VU. Beware of the difference between the letter 'O' and the digit '0'.