The Stacks project

97.4 Morphisms of stacks in groupoids

This section is preliminary and should be skipped on a first reading.

Lemma 97.4.1. Let $\mathcal{X} \to \mathcal{Y} \to \mathcal{Z}$ be $1$-morphisms of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. If $\mathcal{X} \to \mathcal{Z}$ and $\mathcal{Y} \to \mathcal{Z}$ are representable by algebraic spaces and étale so is $\mathcal{X} \to \mathcal{Y}$.

Proof. Let $\mathcal{U}$ be a representable category fibred in groupoids over $S$. Let $f : \mathcal{U} \to \mathcal{Y}$ be a $1$-morphism. We have to show that $\mathcal{X} \times _\mathcal {Y} \mathcal{U}$ is representable by an algebraic space and étale over $\mathcal{U}$. Consider the composition $h : \mathcal{U} \to \mathcal{Z}$. Then

\[ \mathcal{X} \times _\mathcal {Z} \mathcal{U} \longrightarrow \mathcal{Y} \times _\mathcal {Z} \mathcal{U} \]

is a $1$-morphism between categories fibres in groupoids which are both representable by algebraic spaces and both étale over $\mathcal{U}$. Hence by Properties of Spaces, Lemma 66.16.6 this is represented by an étale morphism of algebraic spaces. Finally, we obtain the result we want as the morphism $f$ induces a morphism $\mathcal{U} \to \mathcal{Y} \times _\mathcal {Z} \mathcal{U}$ and we have

\[ \mathcal{X} \times _\mathcal {Y} \mathcal{U} = (\mathcal{X} \times _\mathcal {Z} \mathcal{U}) \times _{(\mathcal{Y} \times _\mathcal {Z} \mathcal{U})} \mathcal{U}. \]
$\square$

Lemma 97.4.2. Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ be stacks in groupoids over $(\mathit{Sch}/S)_{fppf}$. Suppose that $\mathcal{X} \to \mathcal{Y}$ and $\mathcal{Z} \to \mathcal{Y}$ are $1$-morphisms. If

  1. $\mathcal{Y}$, $\mathcal{Z}$ are representable by algebraic spaces $Y$, $Z$ over $S$,

  2. the associated morphism of algebraic spaces $Y \to Z$ is surjective, flat and locally of finite presentation, and

  3. $\mathcal{Y} \times _\mathcal {Z} \mathcal{X}$ is a stack in setoids,

then $\mathcal{X}$ is a stack in setoids.

Proof. This is a special case of Stacks, Lemma 8.6.10. $\square$

The following lemma is the analogue of Algebraic Stacks, Lemma 94.15.3 and will be superseded by the stronger Theorem 97.16.1.

Lemma 97.4.3. Let $S$ be a scheme. Let $u : \mathcal{U} \to \mathcal{X}$ be a $1$-morphism of stacks in groupoids over $(\mathit{Sch}/S)_{fppf}$. If

  1. $\mathcal{U}$ is representable by an algebraic space, and

  2. $u$ is representable by algebraic spaces, surjective, flat and locally of finite presentation,

then $\Delta : \mathcal{X} \to \mathcal{X} \times \mathcal{X}$ representable by algebraic spaces.

Proof. Given two schemes $T_1$, $T_2$ over $S$ denote $\mathcal{T}_ i = (\mathit{Sch}/T_ i)_{fppf}$ the associated representable fibre categories. Suppose given $1$-morphisms $f_ i : \mathcal{T}_ i \to \mathcal{X}$. According to Algebraic Stacks, Lemma 94.10.11 it suffices to prove that the $2$-fibered product $\mathcal{T}_1 \times _\mathcal {X} \mathcal{T}_2$ is representable by an algebraic space. By Stacks, Lemma 8.6.8 this is in any case a stack in setoids. Thus $\mathcal{T}_1 \times _\mathcal {X} \mathcal{T}_2$ corresponds to some sheaf $F$ on $(\mathit{Sch}/S)_{fppf}$, see Stacks, Lemma 8.6.3. Let $U$ be the algebraic space which represents $\mathcal{U}$. By assumption

\[ \mathcal{T}_ i' = \mathcal{U} \times _{u, \mathcal{X}, f_ i} \mathcal{T}_ i \]

is representable by an algebraic space $T'_ i$ over $S$. Hence $\mathcal{T}_1' \times _\mathcal {U} \mathcal{T}_2'$ is representable by the algebraic space $T'_1 \times _ U T'_2$. Consider the commutative diagram

\[ \xymatrix{ & \mathcal{T}_1 \times _{\mathcal X} \mathcal{T}_2 \ar[rr]\ar '[d][dd] & & \mathcal{T}_1 \ar[dd] \\ \mathcal{T}_1' \times _\mathcal {U} \mathcal{T}_2' \ar[ur]\ar[rr]\ar[dd] & & \mathcal{T}_1' \ar[ur]\ar[dd] \\ & \mathcal{T}_2 \ar '[r][rr] & & \mathcal X \\ \mathcal{T}_2' \ar[rr]\ar[ur] & & \mathcal{U} \ar[ur] } \]

In this diagram the bottom square, the right square, the back square, and the front square are $2$-fibre products. A formal argument then shows that $\mathcal{T}_1' \times _\mathcal {U} \mathcal{T}_2' \to \mathcal{T}_1 \times _{\mathcal X} \mathcal{T}_2$ is the “base change” of $\mathcal{U} \to \mathcal{X}$, more precisely the diagram

\[ \xymatrix{ \mathcal{T}_1' \times _\mathcal {U} \mathcal{T}_2' \ar[d] \ar[r] & \mathcal{U} \ar[d] \\ \mathcal{T}_1 \times _{\mathcal X} \mathcal{T}_2 \ar[r] & \mathcal{X} } \]

is a $2$-fibre square. Hence $T'_1 \times _ U T'_2 \to F$ is representable by algebraic spaces, flat, locally of finite presentation and surjective, see Algebraic Stacks, Lemmas 94.9.6, 94.9.7, 94.10.4, and 94.10.6. Therefore $F$ is an algebraic space by Bootstrap, Theorem 80.10.1 and we win. $\square$

Lemma 97.4.4. Let $\mathcal{X}$ be a category fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. The following are equivalent

  1. $\Delta _\Delta : \mathcal{X} \to \mathcal{X} \times _{\mathcal{X} \times \mathcal{X}} \mathcal{X}$ is representable by algebraic spaces,

  2. for every $1$-morphism $\mathcal{V} \to \mathcal{X} \times \mathcal{X}$ with $\mathcal{V}$ representable (by a scheme) the fibre product $\mathcal{Y} = \mathcal{X} \times _{\Delta , \mathcal{X} \times \mathcal{X}} \mathcal{V}$ has diagonal representable by algebraic spaces.

Proof. Although this is a bit of a brain twister, it is completely formal. Namely, recall that $\mathcal{X} \times _{\mathcal{X} \times \mathcal{X}} \mathcal{X} = \mathcal{I}_\mathcal {X}$ is the inertia of $\mathcal{X}$ and that $\Delta _\Delta $ is the identity section of $\mathcal{I}_\mathcal {X}$, see Categories, Section 4.34. Thus condition (1) says the following: Given a scheme $V$, an object $x$ of $\mathcal{X}$ over $V$, and a morphism $\alpha : x \to x$ of $\mathcal{X}_ V$ the condition “$\alpha = \text{id}_ x$” defines an algebraic space over $V$. (In other words, there exists a monomorphism of algebraic spaces $W \to V$ such that a morphism of schemes $f : T \to V$ factors through $W$ if and only if $f^*\alpha = \text{id}_{f^*x}$.)

On the other hand, let $V$ be a scheme and let $x, y$ be objects of $\mathcal{X}$ over $V$. Then $(x, y)$ define a morphism $\mathcal{V} = (\mathit{Sch}/V)_{fppf} \to \mathcal{X} \times \mathcal{X}$. Next, let $h : V' \to V$ be a morphism of schemes and let $\alpha : h^*x \to h^*y$ and $\beta : h^*x \to h^*y$ be morphisms of $\mathcal{X}_{V'}$. Then $(\alpha , \beta )$ define a morphism $\mathcal{V}' = (\mathit{Sch}/V)_{fppf} \to \mathcal{Y} \times \mathcal{Y}$. Condition (2) now says that (with any choices as above) the condition “$\alpha = \beta $” defines an algebraic space over $V$.

To see the equivalence, given $(\alpha , \beta )$ as in (2) we see that (1) implies that “$\alpha ^{-1} \circ \beta = \text{id}_{h^*x}$” defines an algebraic space. The implication (2) $\Rightarrow $ (1) follows by taking $h = \text{id}_ V$ and $\beta = \text{id}_ x$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05XJ. Beware of the difference between the letter 'O' and the digit '0'.