Lemma 31.18.5. Let $f : X \to S$ be a morphism of schemes. Let $D \subset X$ be a relative effective Cartier divisor on $X/S$. If $x \in D$ and $\mathcal{O}_{X, x}$ is Noetherian, then $f$ is flat at $x$.
Proof. Set $A = \mathcal{O}_{S, f(x)}$ and $B = \mathcal{O}_{X, x}$. Let $h \in B$ be an element which generates the ideal of $D$. Then $h$ is a nonzerodivisor in $B$ such that $B/hB$ is a flat local $A$-algebra. Let $I \subset A$ be a finitely generated ideal. Consider the commutative diagram
The lower sequence is short exact as $B/hB$ is flat over $A$, see Algebra, Lemma 10.39.12. The right vertical arrow is injective as $B/hB$ is flat over $A$, see Algebra, Lemma 10.39.5. Hence multiplication by $h$ is surjective on the kernel $K$ of the middle vertical arrow. By Nakayama's lemma, see Algebra, Lemma 10.20.1 we conclude that $K= 0$. Hence $B$ is flat over $A$, see Algebra, Lemma 10.39.5. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)