Lemma 15.69.11. Let $R$ be a ring. Let $f_1, \ldots , f_ r \in R$ be elements which generate the unit ideal. Let $K^\bullet $ be a complex of $R$-modules. If for each $i$ the complex $K^\bullet \otimes _ R R_{f_ i}$ is perfect, then $K^\bullet $ is perfect.

**Proof.**
Using Lemma 15.69.2 this translates into the corresponding results for pseudo-coherent modules and modules of finite tor dimension. See Lemma 15.63.16 and Lemma 15.62.15 for those results.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: