Lemma 79.9.5. In Situation 79.9.2. Let k'/k be a field extension, U' = \mathop{\mathrm{Spec}}(k') and let (U', R', s', t', c') be the restriction of (U, R, s, t, c) via U' \to U. In the defining diagram
\xymatrix{ R' \ar[d] \ar[r] \ar@/_3pc/[dd]_{t'} \ar@/^1pc/[rr]^{s'} \ar@{..>}[rd] & R \times _{s, U} U' \ar[r] \ar[d] & U' \ar[d] \\ U' \times _{U, t} R \ar[d] \ar[r] & R \ar[r]^ s \ar[d]_ t & U \\ U' \ar[r] & U }
all the morphisms are surjective, flat, and universally open. The dotted arrow R' \to R is in addition affine.
Proof.
The morphism U' \to U equals \mathop{\mathrm{Spec}}(k') \to \mathop{\mathrm{Spec}}(k), hence is affine, surjective and flat. The morphisms s, t : R \to U and the morphism U' \to U are universally open by Morphisms, Lemma 29.23.4. Since R is not empty and U is the spectrum of a field the morphisms s, t : R \to U are surjective and flat. Then you conclude by using Morphisms of Spaces, Lemmas 67.5.5, 67.5.4, 67.6.4, 67.20.5, 67.20.4, 67.30.4, and 67.30.3.
\square
Comments (0)