Lemma 79.9.5. In Situation 79.9.2. Let $k'/k$ be a field extension, $U' = \mathop{\mathrm{Spec}}(k')$ and let $(U', R', s', t', c')$ be the restriction of $(U, R, s, t, c)$ via $U' \to U$. In the defining diagram
\[ \xymatrix{ R' \ar[d] \ar[r] \ar@/_3pc/[dd]_{t'} \ar@/^1pc/[rr]^{s'} \ar@{..>}[rd] & R \times _{s, U} U' \ar[r] \ar[d] & U' \ar[d] \\ U' \times _{U, t} R \ar[d] \ar[r] & R \ar[r]^ s \ar[d]_ t & U \\ U' \ar[r] & U } \]
all the morphisms are surjective, flat, and universally open. The dotted arrow $R' \to R$ is in addition affine.
Proof.
The morphism $U' \to U$ equals $\mathop{\mathrm{Spec}}(k') \to \mathop{\mathrm{Spec}}(k)$, hence is affine, surjective and flat. The morphisms $s, t : R \to U$ and the morphism $U' \to U$ are universally open by Morphisms, Lemma 29.23.4. Since $R$ is not empty and $U$ is the spectrum of a field the morphisms $s, t : R \to U$ are surjective and flat. Then you conclude by using Morphisms of Spaces, Lemmas 67.5.5, 67.5.4, 67.6.4, 67.20.5, 67.20.4, 67.30.4, and 67.30.3.
$\square$
Comments (0)