Lemma 79.9.6. In Situation 79.9.2. For any point r \in |R| there exist
a field extension k'/k with k' algebraically closed,
a point r' : \mathop{\mathrm{Spec}}(k') \to R' where (U', R', s', t', c') is the restriction of (U, R, s, t, c) via \mathop{\mathrm{Spec}}(k') \to \mathop{\mathrm{Spec}}(k)
such that
the point r' maps to r under the morphism R' \to R, and
the maps s' \circ r', t' \circ r' : \mathop{\mathrm{Spec}}(k') \to \mathop{\mathrm{Spec}}(k') are automorphisms.
Comments (0)