Lemma 79.9.6. In Situation 79.9.2. For any point $r \in |R|$ there exist
a field extension $k'/k$ with $k'$ algebraically closed,
a point $r' : \mathop{\mathrm{Spec}}(k') \to R'$ where $(U', R', s', t', c')$ is the restriction of $(U, R, s, t, c)$ via $\mathop{\mathrm{Spec}}(k') \to \mathop{\mathrm{Spec}}(k)$
such that
the point $r'$ maps to $r$ under the morphism $R' \to R$, and
the maps $s' \circ r', t' \circ r' : \mathop{\mathrm{Spec}}(k') \to \mathop{\mathrm{Spec}}(k')$ are automorphisms.
Comments (0)