Lemma 72.13.3. Let $S$ be a scheme. Let $\tau \in \{ fpqc, \linebreak fppf, \linebreak syntomic, \linebreak smooth, \linebreak {\acute{e}tale}\}$. Suppose that $\mathcal{P}$ is a property of morphisms of schemes over $S$ which is étale local on the source-and-target. Denote $\mathcal{P}_{spaces}$ the corresponding property of morphisms of algebraic spaces over $S$, see Morphisms of Spaces, Definition 65.22.2. If $\mathcal{P}$ is local on the source for the $\tau$-topology, then $\mathcal{P}_{spaces}$ is local on the source for the $\tau$-topology.

Proof. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Let $\{ X_ i \to X\} _{i \in I}$ be a $\tau$-covering of algebraic spaces. Choose a scheme $V$ and a surjective étale morphism $V \to Y$. Choose a scheme $U$ and a surjective étale morphism $U \to X \times _ Y V$. For each $i$ choose a scheme $U_ i$ and a surjective étale morphism $U_ i \to X_ i \times _ X U$.

Note that $\{ X_ i \times _ X U \to U\} _{i \in I}$ is a $\tau$-covering. Note that each $\{ U_ i \to X_ i \times _ X U\}$ is an étale covering, hence a $\tau$-covering. Hence $\{ U_ i \to U\} _{i \in I}$ is a $\tau$-covering of algebraic spaces over $S$. But since $U$ and each $U_ i$ is a scheme we see that $\{ U_ i \to U\} _{i \in I}$ is a $\tau$-covering of schemes over $S$.

Now we have

\begin{align*} f \text{ has }\mathcal{P}_{spaces} & \Leftrightarrow U \to V \text{ has }\mathcal{P} \\ & \Leftrightarrow \text{each }U_ i \to V \text{ has }\mathcal{P} \\ & \Leftrightarrow \text{each }X_ i \to Y\text{ has }\mathcal{P}_{spaces}. \end{align*}

the first and last equivalence by the definition of $\mathcal{P}_{spaces}$ the middle equivalence because we assumed $\mathcal{P}$ is local on the source in the $\tau$-topology. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).