Lemma 65.10.8. Let $S$ be a scheme. Let $k$ be a field and let $Z \to \mathop{\mathrm{Spec}}(k)$ be a monomorphism of algebraic spaces over $S$. Then either $Z = \emptyset $ or $Z = \mathop{\mathrm{Spec}}(k)$.

**Proof.**
By Lemmas 65.10.3 and 65.4.9 we see that $Z$ is a separated algebraic space. Hence there exists an open dense subspace $Z' \subset Z$ which is a scheme, see Properties of Spaces, Proposition 64.13.3. By Schemes, Lemma 26.23.11 we see that either $Z' = \emptyset $ or $Z' \cong \mathop{\mathrm{Spec}}(k)$. In the first case we conclude that $Z = \emptyset $ and in the second case we conclude that $Z' = Z = \mathop{\mathrm{Spec}}(k)$ as $Z \to \mathop{\mathrm{Spec}}(k)$ is a monomorphism which is an isomorphism over $Z'$.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)