**Proof.**
Assume (1). Let $W$ be a scheme and let $W \to Z$ be a surjective étale morphism. Then $W$ is a reduced scheme. Let $\eta \in W$ be a generic point of an irreducible component of $W$. Since $W$ is reduced we have $\mathcal{O}_{W, \eta } = \kappa (\eta )$. It follows that the canonical morphism $\eta = \mathop{\mathrm{Spec}}(\kappa (\eta )) \to W$ is flat. We see that the composition $\eta \to Z$ is flat (see Morphisms of Spaces, Lemma 66.30.3). It is also surjective as $|Z|$ is a singleton. In other words (2) holds.

Assume (2). Let $W$ be a scheme and let $W \to Z$ be a surjective étale morphism. Choose a field $k$ and a surjective flat morphism $\mathop{\mathrm{Spec}}(k) \to Z$. Then $W \times _ Z \mathop{\mathrm{Spec}}(k)$ is a scheme étale over $k$. Hence $W \times _ Z \mathop{\mathrm{Spec}}(k)$ is a disjoint union of spectra of fields (see Remark 67.4.1), in particular reduced. Since $W \times _ Z \mathop{\mathrm{Spec}}(k) \to W$ is surjective and flat we conclude that $W$ is reduced (Descent, Lemma 35.19.1). In other words (1) holds.

It is clear that (3) implies (2). Finally, assume (2). Pick a nonempty affine scheme $W$ and an étale morphism $W \to Z$. Pick a closed point $w \in W$ and set $k = \kappa (w)$. The composition

\[ \mathop{\mathrm{Spec}}(k) \xrightarrow {w} W \longrightarrow Z \]

is locally of finite type by Morphisms of Spaces, Lemmas 66.23.2 and 66.39.9. It is also flat and surjective by Lemma 67.13.1. Hence (3) holds.
$\square$

## Comments (0)