Lemma 67.13.3. Let $S$ be a scheme. Let $Z$ be an algebraic space over $S$. The following are equivalent

1. $Z$ is reduced, locally Noetherian, and $|Z|$ is a singleton, and

2. there exists a locally finitely presented, surjective, flat morphism $\mathop{\mathrm{Spec}}(k) \to Z$ where $k$ is a field.

Proof. Assume (2) holds. By Lemma 67.13.2 we see that $Z$ is reduced and $|Z|$ is a singleton. Let $W$ be a scheme and let $W \to Z$ be a surjective étale morphism. Choose a field $k$ and a locally finitely presented, surjective, flat morphism $\mathop{\mathrm{Spec}}(k) \to Z$. Then $W \times _ Z \mathop{\mathrm{Spec}}(k)$ is a scheme étale over $k$, hence a disjoint union of spectra of fields (see Remark 67.4.1), hence locally Noetherian. Since $W \times _ Z \mathop{\mathrm{Spec}}(k) \to W$ is flat, surjective, and locally of finite presentation, we see that $\{ W \times _ Z \mathop{\mathrm{Spec}}(k) \to W\}$ is an fppf covering and we conclude that $W$ is locally Noetherian (Descent, Lemma 35.16.1). In other words (1) holds.

Assume (1). Pick a nonempty affine scheme $W$ and an étale morphism $W \to Z$. Pick a closed point $w \in W$ and set $k = \kappa (w)$. Because $W$ is locally Noetherian the morphism $w : \mathop{\mathrm{Spec}}(k) \to W$ is of finite presentation, see Morphisms, Lemma 29.21.7. Hence the composition

$\mathop{\mathrm{Spec}}(k) \xrightarrow {w} W \longrightarrow Z$

is locally of finite presentation by Morphisms of Spaces, Lemmas 66.28.2 and 66.39.8. It is also flat and surjective by Lemma 67.13.1. Hence (2) holds. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).