Lemma 101.31.2. Let $\mathcal{X}$ be a quasi-DM algebraic stack. Then the residual gerbe of $\mathcal{X}$ at $x$ exists for every $x \in |\mathcal{X}|$.
Proof. Choose a scheme $U$ and a surjective, flat, locally finite presented, and locally quasi-finite morphism $U \to \mathcal{X}$, see Theorem 101.21.3. Set $R = U \times _\mathcal {X} U$. The projections $s, t : R \to U$ are surjective, flat, locally of finite presentation, and locally quasi-finite as base changes of the morphism $U \to \mathcal{X}$. There is a canonical morphism $[U/R] \to \mathcal{X}$ (see Algebraic Stacks, Lemma 94.16.1) which is an equivalence because $U \to \mathcal{X}$ is surjective, flat, and locally of finite presentation, see Algebraic Stacks, Remark 94.16.3. Thus we may assume that $\mathcal{X} = [U/R]$ where $(U, R, s, t, c)$ is a groupoid in algebraic spaces such that $s, t : R \to U$ are surjective, flat, locally of finite presentation, and locally quasi-finite. Set
The canonical morphism $U' \to U$ is a monomorphism. Let
Because $U' \to U$ is a monomorphism we see that both projections $s', t' : R' \to U'$ factor as a monomorphism followed by a locally quasi-finite morphism. Hence, as $U'$ is a disjoint union of spectra of fields, using Spaces over Fields, Lemma 72.10.9 we conclude that the morphisms $s', t' : R' \to U'$ are locally quasi-finite. Again since $U'$ is a disjoint union of spectra of fields, the morphisms $s', t'$ are also flat. Finally, $s', t'$ locally quasi-finite implies $s', t'$ locally of finite type, hence $s', t'$ locally of finite presentation (because $U'$ is a disjoint union of spectra of fields in particular locally Noetherian, so that Morphisms of Spaces, Lemma 67.28.7 applies). Hence $\mathcal{Z} = [U'/R']$ is an algebraic stack by Criteria for Representability, Theorem 97.17.2. As $R'$ is the restriction of $R$ by $U' \to U$ we see $\mathcal{Z} \to \mathcal{X}$ is a monomorphism by Groupoids in Spaces, Lemma 78.25.1 and Properties of Stacks, Lemma 100.8.4. Since $\mathcal{Z} \to \mathcal{X}$ is a monomorphism we see that $|\mathcal{Z}| \to |\mathcal{X}|$ is injective, see Properties of Stacks, Lemma 100.8.5. By Properties of Stacks, Lemma 100.4.3 we see that
is surjective which implies (by our choice of $U'$) that $|\mathcal{Z}| \to |\mathcal{X}|$ has image $\{ x\} $. We conclude that $|\mathcal{Z}|$ is a singleton. Finally, by construction $U'$ is locally Noetherian and reduced, i.e., $\mathcal{Z}$ is reduced and locally Noetherian. This means that the essential image of $\mathcal{Z} \to \mathcal{X}$ is the residual gerbe of $\mathcal{X}$ at $x$, see Properties of Stacks, Lemma 100.11.12. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: