Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 46.7.3. Let $U = \mathop{\mathrm{Spec}}(A)$ be an affine scheme. The inclusion functor

\[ \textit{Adeq}(\mathcal{O}) \to \textit{Mod}((\mathit{Sch}/U)_\tau , \mathcal{O}) \]

has a right adjoint $A$1. Moreover, the adjunction mapping $A(\mathcal{F}) \to \mathcal{F}$ is an isomorphism for every adequate module $\mathcal{F}$.

Proof. By Topologies, Lemma 34.7.11 (and similarly for the other topologies) we may work with $\mathcal{O}$-modules on $(\textit{Aff}/U)_\tau $. Denote $\mathcal{P}$ the category of module-valued functors on $\textit{Alg}_ A$ and $\mathcal{A}$ the category of adequate functors on $\textit{Alg}_ A$. Denote $i : \mathcal{A} \to \mathcal{P}$ the inclusion functor. Denote $Q : \mathcal{P} \to \mathcal{A}$ the construction of Lemma 46.4.1. We have the commutative diagram

46.7.3.1
\begin{equation} \label{adequate-equation-categories} \vcenter { \xymatrix{ \textit{Adeq}(\mathcal{O}) \ar[r]_-k \ar@{=}[d] & \textit{Mod}((\textit{Aff}/U)_\tau , \mathcal{O}) \ar[r]_-j & \textit{PMod}((\textit{Aff}/U)_\tau , \mathcal{O}) \ar@{=}[d] \\ \mathcal{A} \ar[rr]^-i & & \mathcal{P} } } \end{equation}

The left vertical equality is Lemma 46.5.3 and the right vertical equality was explained in Section 46.3. Define $A(\mathcal{F}) = Q(j(\mathcal{F}))$. Since $j$ is fully faithful it follows immediately that $A$ is a right adjoint of the inclusion functor $k$. Also, since $k$ is fully faithful too, the final assertion follows formally. $\square$

[1] This is the “adequator”.

Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.