Lemma 46.7.1. Let $S$ be a scheme. Let $\mathcal{C} \subset \textit{Adeq}(\mathcal{O})$ denote the full subcategory consisting of parasitic adequate modules. Then

and similarly for the bounded versions.

Let $S$ be a scheme. We continue the discussion started in Section 46.6. The exact functor $v$ induces a functor

\[ D(\textit{Adeq}(\mathcal{O})) \longrightarrow D(\mathit{QCoh}(\mathcal{O}_ S)) \]

and similarly for bounded versions.

Lemma 46.7.1. Let $S$ be a scheme. Let $\mathcal{C} \subset \textit{Adeq}(\mathcal{O})$ denote the full subcategory consisting of parasitic adequate modules. Then

\[ D(\textit{Adeq}(\mathcal{O}))/D_\mathcal {C}(\textit{Adeq}(\mathcal{O})) = D(\mathit{QCoh}(\mathcal{O}_ S)) \]

and similarly for the bounded versions.

**Proof.**
Follows immediately from Derived Categories, Lemma 13.17.3.
$\square$

Next, we look for a description the other way around by looking at the functors

\[ K^+(\mathit{QCoh}(\mathcal{O}_ S)) \longrightarrow K^+(\textit{Adeq}(\mathcal{O})) \longrightarrow D^+(\textit{Adeq}(\mathcal{O})) \longrightarrow D^+(\mathit{QCoh}(\mathcal{O}_ S)). \]

In some cases the derived category of adequate modules is a localization of the homotopy category of complexes of quasi-coherent modules at universal quasi-isomorphisms. Let $S$ be a scheme. A map of complexes $\varphi : \mathcal{F}^\bullet \to \mathcal{G}^\bullet $ of quasi-coherent $\mathcal{O}_ S$-modules is said to be a *universal quasi-isomorphism* if for every morphism of schemes $f : T \to S$ the pullback $f^*\varphi $ is a quasi-isomorphism.

Lemma 46.7.2. Let $U = \mathop{\mathrm{Spec}}(A)$ be an affine scheme. The bounded below derived category $D^+(\textit{Adeq}(\mathcal{O}))$ is the localization of $K^+(\mathit{QCoh}(\mathcal{O}_ U))$ at the multiplicative subset of universal quasi-isomorphisms.

**Proof.**
If $\varphi : \mathcal{F}^\bullet \to \mathcal{G}^\bullet $ is a morphism of complexes of quasi-coherent $\mathcal{O}_ U$-modules, then $u\varphi : u\mathcal{F}^\bullet \to u\mathcal{G}^\bullet $ is a quasi-isomorphism if and only if $\varphi $ is a universal quasi-isomorphism. Hence the collection $S$ of universal quasi-isomorphisms is a saturated multiplicative system compatible with the triangulated structure by Derived Categories, Lemma 13.5.4. Hence $S^{-1}K^+(\mathit{QCoh}(\mathcal{O}_ U))$ exists and is a triangulated category, see Derived Categories, Proposition 13.5.6. We obtain a canonical functor $can : S^{-1}K^+(\mathit{QCoh}(\mathcal{O}_ U)) \to D^{+}(\textit{Adeq}(\mathcal{O}))$ by Derived Categories, Lemma 13.5.7.

Note that, almost by definition, every adequate module on $U$ has an embedding into a quasi-coherent sheaf, see Lemma 46.5.5. Hence by Derived Categories, Lemma 13.15.5 given $\mathcal{F}^\bullet \in \mathop{\mathrm{Ob}}\nolimits (K^+(\textit{Adeq}(\mathcal{O})))$ there exists a quasi-isomorphism $\mathcal{F}^\bullet \to u\mathcal{G}^\bullet $ where $\mathcal{G}^\bullet \in \mathop{\mathrm{Ob}}\nolimits (K^+(\mathit{QCoh}(\mathcal{O}_ U)))$. This proves that $can$ is essentially surjective.

Similarly, suppose that $\mathcal{F}^\bullet $ and $\mathcal{G}^\bullet $ are bounded below complexes of quasi-coherent $\mathcal{O}_ U$-modules. A morphism in $D^+(\textit{Adeq}(\mathcal{O}))$ between these consists of a pair $f : u\mathcal{F}^\bullet \to \mathcal{H}^\bullet $ and $s : u\mathcal{G}^\bullet \to \mathcal{H}^\bullet $ where $s$ is a quasi-isomorphism. Pick a quasi-isomorphism $s' : \mathcal{H}^\bullet \to u\mathcal{E}^\bullet $. Then we see that $s' \circ f : \mathcal{F} \to \mathcal{E}^\bullet $ and the universal quasi-isomorphism $s' \circ s : \mathcal{G}^\bullet \to \mathcal{E}^\bullet $ give a morphism in $S^{-1}K^{+}(\mathit{QCoh}(\mathcal{O}_ U))$ mapping to the given morphism. This proves the "fully" part of full faithfulness. Faithfulness is proved similarly. $\square$

Lemma 46.7.3. Let $U = \mathop{\mathrm{Spec}}(A)$ be an affine scheme. The inclusion functor

\[ \textit{Adeq}(\mathcal{O}) \to \textit{Mod}((\mathit{Sch}/U)_\tau , \mathcal{O}) \]

has a right adjoint $A$^{1}. Moreover, the adjunction mapping $A(\mathcal{F}) \to \mathcal{F}$ is an isomorphism for every adequate module $\mathcal{F}$.

**Proof.**
By Topologies, Lemma 34.7.11 (and similarly for the other topologies) we may work with $\mathcal{O}$-modules on $(\textit{Aff}/U)_\tau $. Denote $\mathcal{P}$ the category of module-valued functors on $\textit{Alg}_ A$ and $\mathcal{A}$ the category of adequate functors on $\textit{Alg}_ A$. Denote $i : \mathcal{A} \to \mathcal{P}$ the inclusion functor. Denote $Q : \mathcal{P} \to \mathcal{A}$ the construction of Lemma 46.4.1. We have the commutative diagram

46.7.3.1

\begin{equation} \label{adequate-equation-categories} \vcenter { \xymatrix{ \textit{Adeq}(\mathcal{O}) \ar[r]_-k \ar@{=}[d] & \textit{Mod}((\textit{Aff}/U)_\tau , \mathcal{O}) \ar[r]_-j & \textit{PMod}((\textit{Aff}/U)_\tau , \mathcal{O}) \ar@{=}[d] \\ \mathcal{A} \ar[rr]^-i & & \mathcal{P} } } \end{equation}

The left vertical equality is Lemma 46.5.3 and the right vertical equality was explained in Section 46.3. Define $A(\mathcal{F}) = Q(j(\mathcal{F}))$. Since $j$ is fully faithful it follows immediately that $A$ is a right adjoint of the inclusion functor $k$. Also, since $k$ is fully faithful too, the final assertion follows formally. $\square$

The functor $A$ is a right adjoint hence left exact. Since the inclusion functor is exact, see Lemma 46.5.11 we conclude that $A$ transforms injectives into injectives, and that the category $\textit{Adeq}(\mathcal{O})$ has enough injectives, see Homology, Lemma 12.29.3 and Injectives, Theorem 19.8.4. This also follows from the equivalence in (46.7.3.1) and Lemma 46.4.2.

Lemma 46.7.4. Let $U = \mathop{\mathrm{Spec}}(A)$ be an affine scheme. For any object $\mathcal{F}$ of $\textit{Adeq}(\mathcal{O})$ we have $R^ pA(\mathcal{F}) = 0$ for all $p > 0$ where $A$ is as in Lemma 46.7.3.

**Proof.**
With notation as in the proof of Lemma 46.7.3 choose an injective resolution $k(\mathcal{F}) \to \mathcal{I}^\bullet $ in the category of $\mathcal{O}$-modules on $(\textit{Aff}/U)_\tau $. By Cohomology on Sites, Lemmas 21.12.2 and Lemma 46.5.8 the complex $j(\mathcal{I}^\bullet )$ is exact. On the other hand, each $j(\mathcal{I}^ n)$ is an injective object of the category of presheaves of modules by Cohomology on Sites, Lemma 21.12.1. It follows that $R^ pA(\mathcal{F}) = R^ pQ(j(k(\mathcal{F})))$. Hence the result now follows from Lemma 46.4.10.
$\square$

Let $S$ be a scheme. By the discussion in Section 46.5 the embedding $\textit{Adeq}(\mathcal{O}) \subset \textit{Mod}((\mathit{Sch}/S)_\tau , \mathcal{O})$ exhibits $\textit{Adeq}(\mathcal{O})$ as a weak Serre subcategory of the category of all $\mathcal{O}$-modules. Denote

\[ D_{\textit{Adeq}}(\mathcal{O}) \subset D(\mathcal{O}) = D(\textit{Mod}((\mathit{Sch}/S)_\tau , \mathcal{O})) \]

the triangulated subcategory of complexes whose cohomology sheaves are adequate, see Derived Categories, Section 13.17. We obtain a canonical functor

\[ D(\textit{Adeq}(\mathcal{O})) \longrightarrow D_{\textit{Adeq}}(\mathcal{O}) \]

see Derived Categories, Equation (13.17.1.1).

Lemma 46.7.5. If $U = \mathop{\mathrm{Spec}}(A)$ is an affine scheme, then the bounded below version

46.7.5.1

\begin{equation} \label{adequate-equation-compare-bounded-adequate} D^+(\textit{Adeq}(\mathcal{O})) \longrightarrow D^+_{\textit{Adeq}}(\mathcal{O}) \end{equation}

of the functor above is an equivalence.

**Proof.**
Let $A : \textit{Mod}(\mathcal{O}) \to \textit{Adeq}(\mathcal{O})$ be the right adjoint to the inclusion functor constructed in Lemma 46.7.3. Since $A$ is left exact and since $\textit{Mod}(\mathcal{O})$ has enough injectives, $A$ has a right derived functor $RA : D^+_{\textit{Adeq}}(\mathcal{O}) \to D^+(\textit{Adeq}(\mathcal{O}))$. We claim that $RA$ is a quasi-inverse to (46.7.5.1). To see this the key fact is that if $\mathcal{F}$ is an adequate module, then the adjunction map $\mathcal{F} \to RA(\mathcal{F})$ is a quasi-isomorphism by Lemma 46.7.4.

Namely, to prove the lemma in full it suffices to show:

Given $\mathcal{F}^\bullet \in K^+(\textit{Adeq}(\mathcal{O}))$ the canonical map $\mathcal{F}^\bullet \to RA(\mathcal{F}^\bullet )$ is a quasi-isomorphism, and

given $\mathcal{G}^\bullet \in K^+(\textit{Mod}(\mathcal{O}))$ the canonical map $RA(\mathcal{G}^\bullet ) \to \mathcal{G}^\bullet $ is a quasi-isomorphism.

Both (1) and (2) follow from the key fact via a spectral sequence argument using one of the spectral sequences of Derived Categories, Lemma 13.21.3. Some details omitted. $\square$

Lemma 46.7.6. Let $U = \mathop{\mathrm{Spec}}(A)$ be an affine scheme. Let $\mathcal{F}$ and $\mathcal{G}$ be adequate $\mathcal{O}$-modules. For any $i \geq 0$ the natural map

\[ \mathop{\mathrm{Ext}}\nolimits ^ i_{\textit{Adeq}(\mathcal{O})}(\mathcal{F}, \mathcal{G}) \longrightarrow \mathop{\mathrm{Ext}}\nolimits ^ i_{\textit{Mod}(\mathcal{O})}(\mathcal{F}, \mathcal{G}) \]

is an isomorphism.

**Proof.**
By definition these ext groups are computed as hom sets in the derived category. Hence this follows immediately from Lemma 46.7.5.
$\square$

[1] This is the “adequator”.

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)