Lemma 103.7.3. Let f : \mathcal{X} \to \mathcal{Y} be a quasi-compact and quasi-separated morphism of algebraic stacks. Let \mathcal{F} be an object of \textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X}) which is locally quasi-coherent and has the flat base change property. Then each R^ if_*\mathcal{F} (computed in the étale topology) has the flat base change property.
Proof. We will use Lemma 103.5.1 to prove this. For every algebraic stack \mathcal{X} let \textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {X}) denote the full subcategory of \textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X}) consisting of locally quasi-coherent sheaves with the flat base change property. Once we verify conditions (1) – (4) of Lemma 103.5.1 the lemma will follow. Properties (1), (2), and (3) follow from Sheaves on Stacks, Lemmas 96.12.3 and 96.12.4 and Lemmas 103.6.1 and 103.7.2. Thus it suffices to show part (4).
Suppose f : \mathcal{X} \to \mathcal{Y} is a morphism of algebraic stacks such that \mathcal{X} and \mathcal{Y} are representable by affine schemes X and Y. In this case, suppose that \psi : y \to y' is a morphism of \mathcal{Y} lying over a flat morphism b : V \to V' of schemes. For clarity denote \mathcal{V} = (\mathit{Sch}/V)_{fppf} and \mathcal{V}' = (\mathit{Sch}/V')_{fppf} the corresponding algebraic stacks. Consider the diagram of algebraic stacks
with both squares cartesian. As f is representable by schemes (and quasi-compact and separated – even affine) we see that \mathcal{Z} and \mathcal{Z}' are representable by schemes Z and Z' and in fact Z = V \times _{V'} Z'. Since \mathcal{F} has the flat base change property we see that
is an isomorphism. Moreover,
and
by Sheaves on Stacks, Lemma 96.22.3. Hence we see that the comparison map
is an isomorphism by Cohomology of Spaces, Lemma 69.11.2. Thus R^ if_*\mathcal{F} has the flat base change property. Since R^ if_*\mathcal{F} is locally quasi-coherent by Lemma 103.6.2 we win. \square
Comments (2)
Comment #3185 by anonymous on
Comment #3296 by Johan on