The Stacks project

Lemma 103.15.1. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks.

  1. If $f$ is smooth, then $f$ restricts to a continuous and cocontinuous functor $\mathcal{X}_{lisse,{\acute{e}tale}} \to \mathcal{Y}_{lisse,{\acute{e}tale}}$ which gives a morphism of ringed topoi fitting into the following commutative diagram

    \[ \xymatrix{ \mathop{\mathit{Sh}}\nolimits (\mathcal{X}_{lisse,{\acute{e}tale}}) \ar[r]_{g'} \ar[d]_{f'} & \mathop{\mathit{Sh}}\nolimits (\mathcal{X}_{\acute{e}tale}) \ar[d]^ f \\ \mathop{\mathit{Sh}}\nolimits (\mathcal{Y}_{lisse,{\acute{e}tale}}) \ar[r]^ g & \mathop{\mathit{Sh}}\nolimits (\mathcal{Y}_{\acute{e}tale}) } \]

    We have $f'_*(g')^{-1} = g^{-1}f_*$ and $g'_!(f')^{-1} = f^{-1}g_!$.

  2. If $f$ is flat, then $f$ restricts to a continuous and cocontinuous functor $\mathcal{X}_{flat,fppf} \to \mathcal{Y}_{flat,fppf}$ which gives a morphism of ringed topoi fitting into the following commutative diagram

    \[ \xymatrix{ \mathop{\mathit{Sh}}\nolimits (\mathcal{X}_{flat,fppf}) \ar[r]_{g'} \ar[d]_{f'} & \mathop{\mathit{Sh}}\nolimits (\mathcal{X}_{fppf}) \ar[d]^ f \\ \mathop{\mathit{Sh}}\nolimits (\mathcal{Y}_{flat,fppf}) \ar[r]^ g & \mathop{\mathit{Sh}}\nolimits (\mathcal{Y}_{fppf}) } \]

    We have $f'_*(g')^{-1} = g^{-1}f_*$ and $g'_!(f')^{-1} = f^{-1}g_!$.

Proof. The initial statement comes from the fact that if $x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{X})$ lies over a scheme $U$ such that $x : U \to \mathcal{X}$ is smooth (resp. flat) and if $f$ is smooth (resp. flat) then $f(x) : U \to \mathcal{Y}$ is smooth (resp. flat), see Morphisms of Stacks, Lemmas 101.33.2 and 101.25.2. The induced functor $\mathcal{X}_{lisse,{\acute{e}tale}} \to \mathcal{Y}_{lisse,{\acute{e}tale}}$ (resp. $\mathcal{X}_{flat,fppf} \to \mathcal{Y}_{flat,fppf}$) is continuous and cocontinuous by our definition of coverings in these categories. Finally, the commutativity of the diagram is a consequence of the fact that the horizontal morphisms are given by the inclusion functors (see Lemma 103.14.2) and Sites, Lemma 7.21.2.

To show that $f'_*(g')^{-1} = g^{-1}f_*$ let $\mathcal{F}$ be a sheaf on $\mathcal{X}_{\acute{e}tale}$ (resp. $\mathcal{X}_{fppf}$). There is a canonical pullback map

\[ g^{-1}f_*\mathcal{F} \longrightarrow f'_*(g')^{-1}\mathcal{F} \]

see Sites, Section 7.45. We claim this map is an isomorphism. To prove this pick an object $y$ of $\mathcal{Y}_{lisse,{\acute{e}tale}}$ (resp. $\mathcal{Y}_{flat,fppf}$). Say $y$ lies over the scheme $V$ such that $y : V \to \mathcal{Y}$ is smooth (resp. flat). Since $g^{-1}$ is the restriction we find that

\[ \left(g^{-1}f_*\mathcal{F}\right)(y) = \Gamma (V \times _{y, \mathcal{Y}} \mathcal{X},\ \text{pr}^{-1}\mathcal{F}) \]

by Sheaves on Stacks, Equation (96.5.0.1). Let $(V \times _{y, \mathcal{Y}} \mathcal{X})' \subset V \times _{y, \mathcal{Y}} \mathcal{X}$ be the full subcategory consisting of objects $z : W \to V \times _{y, \mathcal{Y}} \mathcal{X}$ such that the induced morphism $W \to \mathcal{X}$ is smooth (resp. flat). Denote

\[ \text{pr}' : (V \times _{y, \mathcal{Y}} \mathcal{X})' \longrightarrow \mathcal{X}_{lisse,{\acute{e}tale}} \ (\text{resp. }\mathcal{X}_{flat,fppf}) \]

the restriction of the functor $\text{pr}$ used in the formula above. Exactly the same argument that proves Sheaves on Stacks, Equation (96.5.0.1) shows that for any sheaf $\mathcal{H}$ on $\mathcal{X}_{lisse,{\acute{e}tale}}$ (resp. $\mathcal{X}_{flat,fppf}$) we have

103.15.1.1
\begin{equation} \label{stacks-cohomology-equation-pushforward-lisse-etale} f'_*\mathcal{H}(y) = \Gamma ((V \times _{y, \mathcal{Y}} \mathcal{X})', \ (\text{pr}')^{-1}\mathcal{H}) \end{equation}

Since $(g')^{-1}$ is restriction we see that

\[ \left(f'_*(g')^{-1}\mathcal{F}\right)(y) = \Gamma ((V \times _{y, \mathcal{Y}} \mathcal{X})', \ \text{pr}^{-1}\mathcal{F}|_{(V \times _{y, \mathcal{Y}} \mathcal{X})'}) \]

By Sheaves on Stacks, Lemma 96.23.3 we see that

\[ \Gamma ((V \times _{y, \mathcal{Y}} \mathcal{X})', \ \text{pr}^{-1}\mathcal{F}|_{(V \times _{y, \mathcal{Y}} \mathcal{X})'}) = \Gamma (V \times _{y, \mathcal{Y}} \mathcal{X},\ \text{pr}^{-1}\mathcal{F}) \]

are equal as desired; although we omit the verification of the assumptions of the lemma we note that the fact that $V \to \mathcal{Y}$ is smooth (resp. flat) is used to verify the second condition.

Finally, the equality $g'_!(f')^{-1} = f^{-1}g_!$ follows formally from the equality $f'_*(g')^{-1} = g^{-1}f_*$ by the adjointness of $f^{-1}$ and $f_*$, the adjointness of $g_!$ and $g^{-1}$, and their “primed” versions. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07AT. Beware of the difference between the letter 'O' and the digit '0'.