Processing math: 100%

The Stacks project

Lemma 103.15.2. With assumptions and notation as in Lemma 103.15.1. Let \mathcal{H} be an abelian sheaf on \mathcal{X}_{lisse,{\acute{e}tale}} (resp. \mathcal{X}_{flat,fppf}). Then

103.15.2.1
\begin{equation} \label{stacks-cohomology-equation-higher-direct-image-lisse-etale} R^ pf'_*\mathcal{H} = \text{sheaf associated to }y \longmapsto H^ p((V \times _{y, \mathcal{Y}} \mathcal{X})', (\text{pr}')^{-1}\mathcal{H}) \end{equation}

Here y is an object of \mathcal{Y}_{lisse,{\acute{e}tale}} (resp. \mathcal{Y}_{flat,fppf}) lying over the scheme V and the notation (V \times _{y, \mathcal{Y}} \mathcal{X})' and \text{pr}' are explained in the proof.

Proof. As in the proof of Lemma 103.15.1 let (V \times _{y, \mathcal{Y}} \mathcal{X})' \subset V \times _{y, \mathcal{Y}} \mathcal{X} be the full subcategory consisting of objects (x, \varphi ) where x is an object of \mathcal{X}_{lisse,{\acute{e}tale}} (resp. \mathcal{X}_{flat,fppf}) and \varphi : f(x) \to y is a morphism in \mathcal{Y}. By Equation (103.15.1.1) we have

f'_*\mathcal{H}(y) = \Gamma ((V \times _{y, \mathcal{Y}} \mathcal{X})', \ (\text{pr}')^{-1}\mathcal{H})

where \text{pr}' is the projection. For an object (x, \varphi ) of (V \times _{y, \mathcal{Y}} \mathcal{X})' we can think of \varphi as a section of (f')^{-1}h_ y over x. Thus (V \times _\mathcal {Y} \mathcal{X})' is the localization of the site \mathcal{X}_{lisse,{\acute{e}tale}} (resp. \mathcal{X}_{flat,fppf}) at the sheaf of sets (f')^{-1}h_ y, see Sites, Lemma 7.30.3. The morphism

\text{pr}' : (V \times _{y, \mathcal{Y}} \mathcal{X})' \to \mathcal{X}_{lisse,{\acute{e}tale}} \ (\text{resp. } \text{pr}' : (V \times _{y, \mathcal{Y}} \mathcal{X})' \to \mathcal{X}_{flat,fppf})

is the localization morphism. In particular, the pullback (\text{pr}')^{-1} preserves injective abelian sheaves, see Cohomology on Sites, Lemma 21.13.3.

Choose an injective resolution \mathcal{H} \to \mathcal{I}^\bullet on \mathcal{X}_{lisse,{\acute{e}tale}} (resp. \mathcal{X}_{flat,fppf}). By the formula for pushforward we see that R^ if'_*\mathcal{H} is the sheaf associated to the presheaf which associates to y the cohomology of the complex

\begin{matrix} \Gamma \Big((V \times _{y, \mathcal{Y}} \mathcal{X})', (\text{pr}')^{-1}\mathcal{I}^{i - 1}\Big) \\ \downarrow \\ \Gamma \Big((V \times _{y, \mathcal{Y}} \mathcal{X})', (\text{pr}')^{-1}\mathcal{I}^ i\Big) \\ \downarrow \\ \Gamma \Big((V \times _{y, \mathcal{Y}} \mathcal{X})', (\text{pr}')^{-1}\mathcal{I}^{i + 1}\Big) \end{matrix}

Since (\text{pr}')^{-1} is exact and preserves injectives the complex (\text{pr}')^{-1}\mathcal{I}^\bullet is an injective resolution of (\text{pr}')^{-1}\mathcal{H} and the proof is complete. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.