Lemma 69.6.2. With notation and assumptions as in Situation 69.6.1. If

1. $f$ is étale,

2. $f_0$ is locally of finite presentation,

then $f_ i$ is étale for some $i \geq 0$.

Proof. Choose an affine scheme $V_0$ and a surjective étale morphism $V_0 \to Y_0$. Choose an affine scheme $U_0$ and a surjective étale morphism $U_0 \to V_0 \times _{Y_0} X_0$. Diagram

$\xymatrix{ U_0 \ar[d] \ar[r] & V_0 \ar[d] \\ X_0 \ar[r] & Y_0 }$

The vertical arrows are surjective and étale by construction. We can base change this diagram to $B_ i$ or $B$ to get

$\vcenter { \xymatrix{ U_ i \ar[d] \ar[r] & V_ i \ar[d] \\ X_ i \ar[r] & Y_ i } } \quad \text{and}\quad \vcenter { \xymatrix{ U \ar[d] \ar[r] & V \ar[d] \\ X \ar[r] & Y } }$

Note that $U_ i, V_ i, U, V$ are affine schemes, the vertical morphisms are surjective étale, and the limit of the morphisms $U_ i \to V_ i$ is $U \to V$. Recall that $X_ i \to Y_ i$ is étale if and only if $U_ i \to V_ i$ is étale and similarly $X \to Y$ is étale if and only if $U \to V$ is étale (Morphisms of Spaces, Lemma 66.39.2). Since $f_0$ is locally of finite presentation, so is the morphism $U_0 \to V_0$. Hence the lemma follows from Limits, Lemma 32.8.10. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).