Lemma 67.15.2. Let S be a scheme. Let X be an algebraic space over S. Let \mathcal{F} be a finite type quasi-coherent \mathcal{O}_ X-module. Then
The support of \mathcal{F} is closed.
For a geometric point \overline{x} lying over x \in |X| we have
x \in \text{Supp}(\mathcal{F}) \Leftrightarrow \mathcal{F}_{\overline{x}} \not= 0 \Leftrightarrow \mathcal{F}_{\overline{x}} \otimes _{\mathcal{O}_{X, \overline{x}}} \kappa (\overline{x}) \not= 0.For any morphism of algebraic spaces f : Y \to X the pullback f^*\mathcal{F} is of finite type as well and we have \text{Supp}(f^*\mathcal{F}) = f^{-1}(\text{Supp}(\mathcal{F})).
Comments (0)