The Stacks project

Lemma 28.22.13. Let $X$ be a scheme. Assume $X$ is quasi-compact and quasi-separated. Let $\mathcal{A}$ be an integral quasi-coherent $\mathcal{O}_ X$-algebra. Then

  1. $\mathcal{A}$ is the directed colimit of its finite quasi-coherent $\mathcal{O}_ X$-subalgebras, and

  2. $\mathcal{A}$ is a direct colimit of finite and finitely presented quasi-coherent $\mathcal{O}_ X$-algebras.

Proof. By Lemma 28.22.11 we have $\mathcal{A} = \mathop{\mathrm{colim}}\nolimits \mathcal{A}_ i$ where $\mathcal{A}_ i \subset \mathcal{A}$ runs through the quasi-coherent $\mathcal{O}_ X$-algebras of finite type. Any finite type quasi-coherent $\mathcal{O}_ X$-subalgebra of $\mathcal{A}$ is finite (apply Algebra, Lemma 10.36.5 to $\mathcal{A}_ i(U) \subset \mathcal{A}(U)$ for affine opens $U$ in $X$). This proves (1).

To prove (2), write $\mathcal{A} = \mathop{\mathrm{colim}}\nolimits \mathcal{F}_ i$ as a colimit of finitely presented $\mathcal{O}_ X$-modules using Lemma 28.22.7. For each $i$, let $\mathcal{J}_ i$ be the kernel of the map

\[ \text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}_ i) \longrightarrow \mathcal{A} \]

For $i' \geq i$ there is an induced map $\mathcal{J}_ i \to \mathcal{J}_{i'}$ and we have $\mathcal{A} = \mathop{\mathrm{colim}}\nolimits \text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}_ i)/\mathcal{J}_ i$. Moreover, the quasi-coherent $\mathcal{O}_ X$-algebras $\text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}_ i)/\mathcal{J}_ i$ are finite (see above). Write $\mathcal{J}_ i = \mathop{\mathrm{colim}}\nolimits \mathcal{E}_{ik}$ as a colimit of finitely presented $\mathcal{O}_ X$-modules. Given $i' \geq i$ and $k$ there exists a $k'$ such that we have a map $\mathcal{E}_{ik} \to \mathcal{E}_{i'k'}$ making

\[ \xymatrix{ \mathcal{J}_ i \ar[r] & \mathcal{J}_{i'} \\ \mathcal{E}_{ik} \ar[u] \ar[r] & \mathcal{E}_{i'k'} \ar[u] } \]

commute. This follows from Modules, Lemma 17.22.8. This induces a map

\[ \mathcal{A}_{ik} = \text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}_ i)/(\mathcal{E}_{ik}) \longrightarrow \text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}_{i'})/(\mathcal{E}_{i'k'}) = \mathcal{A}_{i'k'} \]

where $(\mathcal{E}_{ik})$ denotes the ideal generated by $\mathcal{E}_{ik}$. The quasi-coherent $\mathcal{O}_ X$-algebras $\mathcal{A}_{ki}$ are of finite presentation and finite for $k$ large enough (see proof of Lemma 28.22.12). Finally, we have

\[ \mathop{\mathrm{colim}}\nolimits \mathcal{A}_{ik} = \mathop{\mathrm{colim}}\nolimits \mathcal{A}_ i = \mathcal{A} \]

Namely, the first equality was shown in the proof of Lemma 28.22.12 and the second equality because $\mathcal{A}$ is the colimit of the modules $\mathcal{F}_ i$. $\square$


Comments (2)

Comment #1924 by Guignard on

Typo in the statement of Lemma : "coherent" instead of "cohernet".


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0817. Beware of the difference between the letter 'O' and the digit '0'.