Lemma 28.22.7. Let $X$ be a scheme. Assume $X$ is quasi-compact and quasi-separated. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. There exist
a directed set $I$ (see Categories, Definition 4.21.1),
a system $(\mathcal{F}_ i, \varphi _{ii'})$ over $I$ in $\textit{Mod}(\mathcal{O}_ X)$ (see Categories, Definition 4.21.2)
morphisms of $\mathcal{O}_ X$-modules $\varphi _ i : \mathcal{F}_ i \to \mathcal{F}$
such that each $\mathcal{F}_ i$ is of finite presentation and such that the morphisms $\varphi _ i$ induce an isomorphism
Comments (0)