Lemma 27.22.8. Let $X$ be a scheme. Assume $X$ is quasi-compact and quasi-separated. Let $\mathcal{F}$ be a finite type quasi-coherent $\mathcal{O}_ X$-module. Then we can write $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits \mathcal{F}_ i$ with $\mathcal{F}_ i$ of finite presentation and all transition maps $\mathcal{F}_ i \to \mathcal{F}_{i'}$ surjective.

**Proof.**
Write $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits \mathcal{G}_ i$ as a filtered colimit of finitely presented $\mathcal{O}_ X$-modules (Lemma 27.22.6). We claim that $\mathcal{G}_ i \to \mathcal{F}$ is surjective for some $i$. Namely, choose a finite affine open covering $X = U_1 \cup \ldots \cup U_ m$. Choose sections $s_{jl} \in \mathcal{F}(U_ j)$ generating $\mathcal{F}|_{U_ j}$, see Lemma 27.16.1. By Sheaves, Lemma 6.29.1 we see that $s_{jl}$ is in the image of $\mathcal{G}_ i \to \mathcal{F}$ for $i$ large enough. Hence $\mathcal{G}_ i \to \mathcal{F}$ is surjective for $i$ large enough. Choose such an $i$ and let $\mathcal{K} \subset \mathcal{G}_ i$ be the kernel of the map $\mathcal{G}_ i \to \mathcal{F}$. Write $\mathcal{K} = \mathop{\mathrm{colim}}\nolimits \mathcal{K}_ a$ as the filtered colimit of its finite type quasi-coherent submodules (Lemma 27.22.7). Then $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits \mathcal{G}_ i/\mathcal{K}_ a$ is a solution to the problem posed by the lemma.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #2653 by BB on

Comment #2669 by Johan on