The Stacks project

Quasi-coherent modules on quasi-compact and quasi-separated schemes are filtered colimits of finitely presented modules.

Lemma 28.22.6. Let $X$ be a scheme. Assume $X$ is quasi-compact and quasi-separated. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. There exist

  1. a filtered index category $\mathcal{I}$ (see Categories, Definition 4.19.1),

  2. a diagram $\mathcal{I} \to \textit{Mod}(\mathcal{O}_ X)$ (see Categories, Section 4.14), $i \mapsto \mathcal{F}_ i$,

  3. morphisms of $\mathcal{O}_ X$-modules $\varphi _ i : \mathcal{F}_ i \to \mathcal{F}$

such that each $\mathcal{F}_ i$ is of finite presentation and such that the morphisms $\varphi _ i$ induce an isomorphism

\[ \mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i = \mathcal{F}. \]

Proof. Choose a set $I$ and for each $i \in I$ an $\mathcal{O}_ X$-module of finite presentation and a homomorphism of $\mathcal{O}_ X$-modules $\varphi _ i : \mathcal{F}_ i \to \mathcal{F}$ with the following property: For any $\psi : \mathcal{G} \to \mathcal{F}$ with $\mathcal{G}$ of finite presentation there is an $i \in I$ such that there exists an isomorphism $\alpha : \mathcal{F}_ i \to \mathcal{G}$ with $\varphi _ i = \psi \circ \alpha $. It is clear from Modules, Lemma 17.9.8 that such a set exists (see also its proof). We denote $\mathcal{I}$ the category with $\mathop{\mathrm{Ob}}\nolimits (\mathcal{I}) = I$ and given $i, i' \in I$ we set

\[ \mathop{\mathrm{Mor}}\nolimits _\mathcal {I}(i, i') = \{ \alpha : \mathcal{F}_ i \to \mathcal{F}_{i'} \mid \alpha \circ \varphi _{i'} = \varphi _ i \} . \]

We claim that $\mathcal{I}$ is a filtered category and that $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i$.

Let $i, i' \in I$. Then we can consider the morphism

\[ \mathcal{F}_ i \oplus \mathcal{F}_{i'} \longrightarrow \mathcal{F} \]

which is the direct sum of $\varphi _ i$ and $\varphi _{i'}$. Since a direct sum of finitely presented $\mathcal{O}_ X$-modules is finitely presented we see that there exists some $i'' \in I$ such that $\varphi _{i''} : \mathcal{F}_{i''} \to \mathcal{F}$ is isomorphic to the displayed arrow towards $\mathcal{F}$ above. Since there are commutative diagrams

\[ \xymatrix{ \mathcal{F}_ i \ar[r] \ar[d] & \mathcal{F} \ar@{=}[d] \\ \mathcal{F}_ i \oplus \mathcal{F}_{i'} \ar[r] & \mathcal{F} } \quad \text{and} \quad \xymatrix{ \mathcal{F}_{i'} \ar[r] \ar[d] & \mathcal{F} \ar@{=}[d] \\ \mathcal{F}_ i \oplus \mathcal{F}_{i'} \ar[r] & \mathcal{F} } \]

we see that there are morphisms $i \to i''$ and $i' \to i''$ in $\mathcal{I}$. Next, suppose that we have $i, i' \in I$ and morphisms $\alpha , \beta : i \to i'$ (corresponding to $\mathcal{O}_ X$-module maps $\alpha , \beta : \mathcal{F}_ i \to \mathcal{F}_{i'}$). In this case consider the coequalizer

\[ \mathcal{G} = \mathop{\mathrm{Coker}}( \mathcal{F}_ i \xrightarrow {\alpha - \beta } \mathcal{F}_{i'} ) \]

Note that $\mathcal{G}$ is an $\mathcal{O}_ X$-module of finite presentation. Since by definition of morphisms in the category $\mathcal{I}$ we have $\varphi _{i'} \circ \alpha = \varphi _{i'} \circ \beta $ we see that we get an induced map $\psi : \mathcal{G} \to \mathcal{F}$. Hence again the pair $(\mathcal{G}, \psi )$ is isomorphic to the pair $(\mathcal{F}_{i''}, \varphi _{i''})$ for some $i''$. Hence we see that there exists a morphism $i' \to i''$ in $\mathcal{I}$ which equalizes $\alpha $ and $\beta $. Thus we have shown that the category $\mathcal{I}$ is filtered.

We still have to show that the colimit of the diagram is $\mathcal{F}$. By definition of the colimit, and by our definition of the category $\mathcal{I}$ there is a canonical map

\[ \varphi : \mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i \longrightarrow \mathcal{F}. \]

Pick $x \in X$. Let us show that $\varphi _ x$ is an isomorphism. Recall that

\[ (\mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i)_ x = \mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_{i, x}, \]

see Sheaves, Section 6.29. First we show that the map $\varphi _ x$ is injective. Suppose that $s \in \mathcal{F}_{i, x}$ is an element such that $s$ maps to zero in $\mathcal{F}_ x$. Then there exists a quasi-compact open $U$ such that $s$ comes from $s \in \mathcal{F}_ i(U)$ and such that $\varphi _ i(s) = 0$ in $\mathcal{F}(U)$. By Lemma 28.22.2 we can find a finite type quasi-coherent subsheaf $\mathcal{K} \subset \mathop{\mathrm{Ker}}(\varphi _ i)$ which restricts to the quasi-coherent $\mathcal{O}_ U$-submodule of $\mathcal{F}_ i$ generated by $s$: $\mathcal{K}|_ U = \mathcal{O}_ U\cdot s \subset \mathcal{F}_ i|_ U$. Clearly, $\mathcal{F}_ i/\mathcal{K}$ is of finite presentation and the map $\varphi _ i$ factors through the quotient map $\mathcal{F}_ i \to \mathcal{F}_ i/\mathcal{K}$. Hence we can find an $i' \in I$ and a morphism $\alpha : \mathcal{F}_ i \to \mathcal{F}_{i'}$ in $\mathcal{I}$ which can be identified with the quotient map $\mathcal{F}_ i \to \mathcal{F}_ i/\mathcal{K}$. Then it follows that the section $s$ maps to zero in $\mathcal{F}_{i'}(U)$ and in particular in $(\mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i)_ x = \mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_{i, x}$. The injectivity follows. Finally, we show that the map $\varphi _ x$ is surjective. Pick $s \in \mathcal{F}_ x$. Choose a quasi-compact open neighbourhood $U \subset X$ of $x$ such that $s$ corresponds to a section $s \in \mathcal{F}(U)$. Consider the map $s : \mathcal{O}_ U \to \mathcal{F}$ (multiplication by $s$). By Lemma 28.22.4 there exists an $\mathcal{O}_ X$-module $\mathcal{G}$ of finite presentation and an $\mathcal{O}_ X$-module map $\mathcal{G} \to \mathcal{F}$ such that $\mathcal{G}|_ U \to \mathcal{F}|_ U$ is identified with $s : \mathcal{O}_ U \to \mathcal{F}$. Again by definition of $\mathcal{I}$ there exists an $i \in I$ such that $\mathcal{G} \to \mathcal{F}$ is isomorphic to $\varphi _ i : \mathcal{F}_ i \to \mathcal{F}$. Clearly there exists a section $s' \in \mathcal{F}_ i(U)$ mapping to $s \in \mathcal{F}(U)$. This proves surjectivity and the proof of the lemma is complete. $\square$

Comments (1)

Comment #1050 by Charles Rezk on

Suggested slogan: Quasi-coherent sheaves of modules on nice schemes are filtered colimits of finitely presentable sheaves.

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01PJ. Beware of the difference between the letter 'O' and the digit '0'.