The Stacks project

Lemma 66.48.5. Let $S$ be a scheme. Let $f : Y \to X$ be a quasi-compact and quasi-separated morphism of algebraic spaces over $S$. The factorization $f = \nu \circ f'$, where $\nu : X' \to X$ is the normalization of $X$ in $Y$ is characterized by the following two properties:

  1. the morphism $\nu $ is integral, and

  2. for any factorization $f = \pi \circ g$, with $\pi : Z \to X$ integral, there exists a commutative diagram

    \[ \xymatrix{ Y \ar[d]_{f'} \ar[r]_ g & Z \ar[d]^\pi \\ X' \ar[ru]^ h \ar[r]^\nu & X } \]

    for a unique morphism $h : X' \to Z$.

Moreover, in (2) the morphism $h : X' \to Z$ is the normalization of $Z$ in $Y$.

Proof. Let $\mathcal{O}' \subset f_*\mathcal{O}_ Y$ be the integral closure of $\mathcal{O}_ X$ as in Definition 66.48.3. The morphism $\nu $ is integral by construction, which proves (1). Assume given a factorization $f = \pi \circ g$ with $\pi : Z \to X$ integral as in (2). By Definition 66.45.2 $\pi $ is affine, and hence $Z$ is the relative spectrum of a quasi-coherent sheaf of $\mathcal{O}_ X$-algebras $\mathcal{B}$. The morphism $g : X \to Z$ corresponds to a map of $\mathcal{O}_ X$-algebras $\chi : \mathcal{B} \to f_*\mathcal{O}_ Y$. Since $\mathcal{B}(U)$ is integral over $\mathcal{O}_ X(U)$ for every affine $U$ ├ętale over $X$ (by Definition 66.45.2) we see from Lemma 66.48.1 that $\chi (\mathcal{B}) \subset \mathcal{O}'$. By the functoriality of the relative spectrum Lemma 66.20.7 this provides us with a unique morphism $h : X' \to Z$. We omit the verification that the diagram commutes.

It is clear that (1) and (2) characterize the factorization $f = \nu \circ f'$ since it characterizes it as an initial object in a category. The morphism $h$ in (2) is integral by Lemma 66.45.12. Given a factorization $g = \pi ' \circ g'$ with $\pi ' : Z' \to Z$ integral, we get a factorization $f = (\pi \circ \pi ') \circ g'$ and we get a morphism $h' : X' \to Z'$. Uniqueness implies that $\pi ' \circ h' = h$. Hence the characterization (1), (2) applies to the morphism $h : X' \to Z$ which gives the last statement of the lemma. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0823. Beware of the difference between the letter 'O' and the digit '0'.