Lemma 70.6.6. Notation and assumptions as in Situation 70.6.1. If $f$ is affine, then $f_ i$ is affine for some $i \geq 0$.

**Proof.**
Choose an affine scheme $V_0$ and a surjective étale morphism $V_0 \to Y_0$. Set $V_ i = V_0 \times _{Y_0} Y_ i$ and $V = V_0 \times _{Y_0} Y$. Since $f$ is affine we see that $V \times _ Y X = \mathop{\mathrm{lim}}\nolimits V_ i \times _{Y_ i} X_ i$ is affine. By Lemma 70.5.10 we see that $V_ i \times _{Y_ i} X_ i$ is affine for some $i \geq 0$. For this $i$ the morphism $f_ i$ is affine (Morphisms of Spaces, Lemma 67.20.3).
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)