The Stacks project

Lemma 68.6.7. Notation and assumptions as in Situation 68.6.1. If

  1. $f$ is finite,

  2. $f_0$ is locally of finite type,

then $f_ i$ is finite for some $i \geq 0$.

Proof. Choose an affine scheme $V_0$ and a surjective ├ętale morphism $V_0 \to Y_0$. Set $V_ i = V_0 \times _{Y_0} Y_ i$ and $V = V_0 \times _{Y_0} Y$. Since $f$ is finite we see that $V \times _ Y X = \mathop{\mathrm{lim}}\nolimits V_ i \times _{Y_ i} X_ i$ is a scheme finite over $V$. By Lemma 68.5.10 we see that $V_ i \times _{Y_ i} X_ i$ is affine for some $i \geq 0$. Increasing $i$ if necessary we find that $V_ i \times _{Y_ i} X_ i \to V_ i$ is finite by Limits, Lemma 32.8.3. For this $i$ the morphism $f_ i$ is finite (Morphisms of Spaces, Lemma 65.45.3). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 084Z. Beware of the difference between the letter 'O' and the digit '0'.