Lemma 71.18.5. Let S be a scheme. Let B be an algebraic space over S. Let Z \subset B be a closed subspace. Let b : B' \to B be the blowing up of Z in B. Let g : X \to Y be an affine morphism of spaces over B. Let \mathcal{F} be a quasi-coherent sheaf on X. Let g' : X \times _ B B' \to Y \times _ B B' be the base change of g. Let \mathcal{F}' be the strict transform of \mathcal{F} relative to b. Then g'_*\mathcal{F}' is the strict transform of g_*\mathcal{F}.
Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 31.33.4) by étale localization (Lemma 71.18.2). \square
Comments (0)
There are also: